

P. O. Box 5400 Albuquerque, NM 87185

MAR 17 2015

MAR 20 2015

Mr. John E. Kieling Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Dr. East, Bldg. 1 Santa Fe, NM 87505

Hazardous Waste Bureau

Subject: Submittal of Chemical Waste Landfill Annual Post-Closure Care Report, Calendar

Year 2014, Chemical Waste Landfill Post-Closure Care Permit for Sandia National Laboratories, New Mexico, Environmental Protection Agency Identification Number

NM5890110518

Dear Mr. Kieling:

The Department of Energy, National Nuclear Security Administration and the Sandia Corporation are submitting the subject report. This submittal is required by Part 2, Section 2.6.3, of the Chemical Waste Landfill (CWL) Post-Closure Care Permit.

This document is comprised of a main report and four annexes that provide information for postclosure care activities conducted at the CWL during Calendar Year 2014. The report and supporting documentation satisfy requirements listed in Permit Attachment 1, Sections 1.9 and 1.12.

If you have questions, please contact John Weckerle of my staff at (505) 845-6026.

Sincerely,

Mark W. Hamilton

Acting Assistant Manager for

Engineering

Enclosure

cc: See Page 2

Submittal of Chemical Waste Landfill Annual Post-Closure Care Report Calendar Year 2014 Chemical Waste Landfill Post-Closure Care Permit

Sandia National Laboratories Albuquerque, New Mexico EPA ID No. NM5890110518

CERTIFICATION STATEMENT

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to ensure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine or imprisonment for knowing violations.

Michael W. Hazen, Vice-President

Sandia Corporation

Albuquerque, New Mexico

Operator

James W. Todd, Assistant Manager

U.S. Department of Energy

National Nuclear Security Administration

Sandia Field Office

Owner

Date signed

Date signed

CHEMICAL WASTE LANDFILL ANNUAL POST-CLOSURE CARE REPORT CALENDAR YEAR 2014

SANDIA NATIONAL LABORATORIES, NEW MEXICO LONG-TERM STEWARDSHIP CHEMICAL WASTE LANDFILL POST-CLOSURE CARE PERMIT

MARCH 2015

United States Department of Energy Sandia Field Office

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

ANNUAL CHEMICAL WASTE LANDFILL POST-CLOSURE CARE REPORT CALENDAR YEAR 2014

Facility: Chemical Waste Landfill

Location: Sandia National Laboratories

Albuquerque, New Mexico

EPA ID No.: NM5890110518

Permit Basis: Chemical Waste Landfill Post-Closure Care Permit, issued October 15,

2009, effective June 2, 2011, and subsequently modified.

Owner: United States Department of Energy

Sandia Field Office

Technical Contact: Mr. John Weckerle, Long-Term Stewardship

U.S. Department of Energy, Sandia Field Office

P.O. Box 5400/MS 0184 Albuquerque, NM 87185-5400

(505) 845-6026

John.Weckerle@nnsa.doe.gov

Operator: Sandia Corporation

Technical Contact: Ms. Pamela Puissant, Manager

Stewardship and Analytical Services Department

Sandia National Laboratories P.O. Box 5800/MS 1103

Albuquerque, NM 87185-5800

(505) 844-3185 pmpuiss@sandia.gov

TABLE OF CONTENTS

LIST C	OF TAB OF ANN	LES EXES	BREVIATIONS	vi vii	
1.0	INTRO	DUCTIC	DN	vivii1-11-22-12-12-42-42-73-13-13-23-23-43-43-44-14-14-14-14-14-14-14-14-1	
	1.1	Purpose	e and Scope	1-2	
2.0	CHEM	IICAL W	ASTE LANDFILL POST-CLOSURE CARE CONDITIONS	2-1	
	2.1 2.2 2.3	Final Co	oundover Systemance Monitoring System	2-1	
		2.3.1 2.3.2	Groundwater Monitoring Network		
	2.4 2.5		Vater Diversion Structures		
3.0	MONITORING AND INSPECTION REQUIREMENTS				
	3.1 3.2	Monitori Inspecti	ing Requirementson, Maintenance, and Repair Requirements	3-1 3-2	
		3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	Final Cover System Inspection/Maintenance/Repair Requirements Storm-Water Diversion Structure Inspection Requirements Monitoring Well Network Inspection Requirements Security Fence Inspection Requirements Emergency Equipment Inspection Requirements	3-4 3-4 3-4	
4.0	GROL	INDWAT	ER MONITORING RESULTS	4-1	
	4.1	Ground	water Sampling Field Activities	4-1	
		4.1.1 4.1.2 4.1.3	Well PurgingField Quality ControlWaste Management	4-2	
	4.2	Laborat	ory Results	4-3	
		4.2.1 4.2.2 4.2.3 4.2.4	Environmental Sample ResultsField Quality Control Sample Results	4-9 .4-10	

TABLE OF CONTENTS (Concluded)

	4.3	Data Ev	aluation	4-10
		4.3.1 4.3.2	Statistical Assessment Requirements	
	4.4	Hydroge	eologic Assessment	4-25
5.0	SOIL-	GAS MOI	NITORING RESULTS	5-1
	5.1	Soil-Gas	s Sampling Field Activities	5-1
		5.1.1 5.1.2 5.1.3	Well EvacuationField Quality Control	5-2
	5.2	Laborato	ory Results	5-2
		5.2.1 5.2.2 5.2.3 5.2.4	Environmental Sample Results	5-17 5-18
	5.3	Data Ev	aluation	5-19
		5.3.1 5.3.2	Statistical Assessment Requirements	
	5.4	Historic	Data Evaluation	5-21
6.0	INSPE	ECTION, I	MAINTENANCE, AND REPAIR RESULTS	6-1
	6.1	Final Co	over System	6-1
		6.1.1 6.1.2 6.1.3	Vegetation Monitoring and Inspection Cover Maintenance Cover Inspection	6-2
	6.2		Vater Diversion Structure Inspection	
	6.3 6.4		ing Well Network Inspection / Fence Inspection	
	6.5	Emerge	ncy Equipment Inspection	6-5

TABLE OF CONTENTS (Concluded)

7.0	REGULATORY ACTIVITIES		
	7.1	Permit Modification Requests	7-
	7.2	Permit Submittals	
	7.3	Technical Communication	
8.0	SUM	IMARY AND CONCLUSIONS	8-^
	8.1	Groundwater and Soil-Gas Monitoring	8-^
	8.2	Inspections	8-
	8.3	Regulatory Activities	8-2
	8.4	Conclusions	8-2
9.0	REFI	ERENCES	9-

LIST OF FIGURES

Figure		Page
2-1	Location of the Chemical Waste Landfill with respect to Kirtland Air Force Base and the City of Albuquerque	2-2
2-2	Location of the Chemical Waste Landfill within Technical Area III	2-3
2-3	Schematic Profile of the Chemical Waste Landfill Evapotranspirative Cover	2-5
2-4	Chemical Waste Landfill Surface Drainage Patterns and Monitoring Networks	2-6
4-1	Chromium Control Chart for CWL-BW5/4A	4-14
4-2	Nickel Control Chart for CWL-BW5/4A	4-15
4-3	TCE Control Chart for CWL-BW5/4A	4-16
4-4	Nickel Control Chart for CWL-MW9	4-17
4-5	Chromium Control Chart for CWL-MW10	4-18
4-6	Nickel Control Chart for CWL-MW10	4-19
4-7	TCE Control Chart for CWL-MW10	4-20
4-8	Chromium Control Chart for CWL-MW11	4-21
4-9	Nickel Control Chart for CWL-MW11	4-22
4-10	Potentiometric Surface of the Regional Aquifer at the Chemical Waste Landfill, October 2014	4-26
5-1	Historic Total TCE Compound Concentrations vs. Time, Chemical Waste Landfill Well UI-1 Ports	5-24
5-2	Historic Total TCE Compound Concentrations vs. Time, Chemical Waste Landfill Well UI-2 Ports	5-25
5-3	Historic Total TCE Compound Concentrations vs. Time, Chemical Waste Landfill Well D1 Ports	5-26
5-4	Historic Total TCE Compound Concentrations vs. Time, Chemical Waste Landfill Well D2 Ports	5-27

LIST OF FIGURES (Concluded)

Figure		Page
5-5	Historic Total TCE Compound Concentrations vs. Time, Chemical Waste Landfill Well D3 Ports	5-28
5-6	Historic Total VOC Compound Concentrations vs. Time, Chemical Waste Landfill Well UI-1 Ports	5-29
5-7	Historic Total VOC Compound Concentrations vs. Time, Chemical Waste Landfill Well UI-2 Ports	5-30
5-8	Historic Total VOC Compound Concentrations vs. Time, Chemical Waste Landfill Well D1 Ports	5-31
5-9	Historic Total VOC Compound Concentrations vs. Time, Chemical Waste Landfill Well D2 Ports	5-32
5-10	Historic Total VOC Compound Concentrations vs. Time, Chemical Waste Landfill Well D3 Ports	5-33

LIST OF TABLES

Table		Page
1-1	Chemical Waste Landfill Post-Closure Care Permit Modification History	1-1
1-2	Chemical Waste Landfill Post-Closure Care Permit Document Submittal History	/1 - 2
3-1	Chemical Waste Landfill Groundwater and Soil-Gas Monitoring Frequency, Parameters, and Methods	3-1
4-1	Summary of Trichloroethene Results, Chemical Waste Landfill Groundwater Monitoring, Analytical Method SW846-8260B for Calendar Year 2014	4-4
4-2	Summary of Chromium and Nickel Results, Chemical Waste Landfill Groundwater Monitoring, Analytical Method SW846-6020 Calendar Year 2014	4-5
4-3	Summary of Additional Volatile Organic Compound Results, Chemical Waste Landfill, Groundwater Monitoring Analytical Method SW846-8260B, January 2014	4-6
4-4	Summary of Field Water Quality Measurements, Chemical Waste Landfill Groundwater Monitoring, Calendar Year 2014	4-8
4-5	Summary of Duplicate Sample Results, Chemical Waste Landfill Groundwater Monitoring, Calendar Year 2014	4-9
4-6	Concentration Limits for the Hazardous Constituents of Concern at the Chemical Waste Landfill	4-11
4-7	Statistical Assessment Results Summary, Chemical Waste Landfill, Calendar Year 2014 Sampling Results	4-13
5-1	Summary of Detected Volatile Organic Compounds, Chemical Waste Landfill Soil-Gas Monitoring, Analytical Method TO-15, Calendar Year 2014	5-3
5-2	Summary of January 2014 Duplicate Samples, Chemical Waste Landfill Soil-Gas Monitoring, Calendar Year 2014	5-18
5-3	Chemical Waste Landfill Soil-Gas Monitoring Statistical Assessment Results Summary, Calendar Year 2014	5-20
5-4	Historic Soil-Gas Monitoring Summary – TCE Concentrations (ppmv), Chemical Waste Landfill	5-22
5-5	Historic Soil-Gas Monitoring Summary – Total Volatile Organic Compound Concentrations (ppmv), Chemical Waste Landfill	5-23

LIST OF ANNEXES

Annex

Annex A	Chemical Waste Landfill CY 2014 Groundwater Monitoring Forms and Reports
Annex B	Chemical Waste Landfill CY 2014 Soil-Gas Monitoring Forms and Reports
Annex C	Chemical Waste Landfill CY 2014 Post-Closure Inspection Forms
Annex D	Chemical Waste Landfill CY 2014 Biology Report

ACRONYMS AND ABBREVIATIONS

AOP administrative operating procedure

bgs below ground surface

CAMU Corrective Action Management Unit

CFR Code of Federal Regulations

Closure Plan Chemical Waste Landfill Final Closure Plan

CWL Chemical Waste Landfill

CY calendar year DO dissolved oxygen

DOE U.S. Department of Energy

DQO data quality objective

EPA U.S. Environmental Protection Agency

ET evapotranspirative gallons per minute gpm Kirtland Air Force Base KAFB LCL lower confidence limit Landfill Excavation LE MDL method detection limit μg/L micrograms per liter mg/L milligrams per liter

NMED New Mexico Environment Department

NTU nephelometric turbidity units
ORP oxidation-reduction potential
PCCP Post-Closure Care Permit

PCE tetrachloroethene

pH potential of hydrogen (negative logarithm of the hydrogen ion concentration)

ppbv parts per billion by volume ppmv parts per million by volume PQL practical quantitation limit

QC quality control RL reporting limit

RPD relative percent difference

Sandia Corporation

SAP sampling and analysis plan

SC specific conductance

SNL Sandia National Laboratories

SNL/NM Sandia National Laboratories, New Mexico TCE trichloroethene (also trichloroethylene)

UCL upper confidence limit

VCM Voluntary Corrective Measure

VE Vapor Extraction

VOC volatile organic compound

1.0 INTRODUCTION

Sandia National Laboratories (SNL) is a multi-purpose engineering and science laboratory owned by the U.S. Department of Energy (DOE)/National Nuclear Security Administration. SNL is managed and operated by Sandia Corporation (Sandia), a wholly-owned subsidiary of Lockheed Martin Corporation.

The Chemical Waste Landfill (CWL) at SNL/New Mexico (SNL/NM) is a remediated interim status landfill that has undergone closure in accordance with Title 20, Chapter 4, Part 1 of the New Mexico Administrative Code (20.4.1.600 NMAC), incorporating Title 40, Code of Federal Regulations (CFR), Part 265, (40 CFR 265) Subpart G, and the CWL Final Closure Plan (Closure Plan) (SNL/NM December 1992 and subsequent revisions). The CWL Post-Closure Care Permit (PCCP) (NMED October 2009), which became effective June 2, 2011 (Kieling June 2011) and has subsequently been modified, defines all post-closure requirements. Table 1-1 summarizes the modification history of the PCCP through 2014.

Table 1-1
Chemical Waste Landfill Post-Closure Care Permit Modification History

	Affected Deuts of	
Date of Modification ^a	Affected Parts of PCCP	Description of Modification
September 26, 2011	Attachment 6 (Contingency Plan)	Updates to emergency response agreements, equipment, emergency coordinators, and inclusion of an evacuation route and assembly point figure and updated figure list.
November 16, 2011	Attachment 6 (Contingency Plan)	Correction of a typographical error in the telephone number for an emergency coordinator.
February 20, 2012	Attachments 1-5	Allow use of equivalent soil-gas passive venting devices and alternate method for analysis of soil-gas samples; clarification of cover inspection and repair specifications; updates to three figures for well locations; revisions to groundwater purging and stability requirements; inclusion of well completion diagrams for the four groundwater monitoring wells, updates to the list of operating procedures; clarification of soil-gas purging requirements; format updates to inspection forms; and correction of typographical errors.
November 7, 2013	Permit Part 3, Attachments 1-4	Provide clarification that alternative formats may be used to document inspections; provide additional detail regarding soil-gas passive venting devices; remove table and text references to the SNL/NM SOW for Analytical Laboratories, the SMO QAPP, and the Groundwater Monitoring HASP; and clarify data quality requirements for soil-gas samples.

Notes:

^aDate represents the effective date of modification.

HASP = Health and safety plan. SMO = Sample Management Office.

QAPP = Quality assurance project plan. SNL/NM = Sandia National Laboratories/New Mexico.

PCCP = Post-Closure Care Permit. SOW = Statement of work.

In addition to permit modifications, DOE/Sandia are required to submit various documents as specified in the PCCP. Table 1-2 summarizes the submittals associated with the PCCP through calendar year (CY) 2014.

Table 1-2
Chemical Waste Landfill Post-Closure Care Permit Document Submittal History

Date of Submittal ^a	PCCP Requirement	Description of Submittal
July 22, 2011	Permit Attachments 2 & 3	Procedures, plans, and documents cited in the PCCP used by SNL/NM personnel for groundwater and soil-gas monitoring.
February 7, 2012	Permit Attachment 2	Four procedures and one plan related to groundwater monitoring activities that were updated to include minor changes that do not affect sampling procedures or protocols. Two title changes to procedures incorporated into the November 2011 Class 1 permit modification request.
January 24, 2013	Permit Attachments 2 & 3	Updates to reference document (SNL/NM Statement of Work for Analytical Laboratories) related to groundwater and soil-gas monitoring to reflect ongoing modifications and improvements in industry practices.
December 9, 2013	Permit Attachments 2 & 3	Revisions to three procedures related to sample management, shipping, and data review that were revised to keep the documents current and reflecting ongoing modifications and improvements in industry practices.
July 8, 2014	Permit Attachments 2 & 3	Two operating procedures cited in the PCCP used by SNL/NM personnel to validate analytical data from contract laboratories and conduct activities related to sampling CWL soil-gas wells.

Notes:

^aDate represents the date stamp on the DOE transmittal letter for the submittal.

PCCP = Post-Closure Care Permit.

SNL/NM = Sandia National Laboratories/New Mexico.

1.1 Purpose and Scope

The purpose of this CWL Annual Post-Closure Care Report is to document monitoring, inspection, maintenance, and repair activities conducted during CY 2014 in accordance with Attachment 1 of the PCCP (NMED October 2009 and subsequent revisions). This annual report documents PCCP activities conducted from January through December 2014 and fulfills the PCCP requirement for annual reporting to the New Mexico Environment Department (NMED).

The PCCP requires monitoring, inspection, and maintenance/repair activities that must be documented and reported for each CY. Monitoring activities include semi-annual groundwater monitoring for specific volatile organic compounds (VOCs) and metals, and annual vadose zone soil-gas monitoring for specific VOCs. Inspection activities are required for the following components: final cover (vegetation and surface); storm-water diversion structures; monitoring

networks and sampling equipment (groundwater and soil-gas); and security fence, locks, gates, signage, and survey monuments. The CWL final cover is a vegetative at-grade soil cover, or evapotranspirative (ET) cover.

The scope of this report includes documentation of all monitoring and inspection activities for CY 2014. Monitoring and inspections performed during this time period included:

- Two semi-annual groundwater monitoring events.
- One annual soil-gas monitoring event.
- Two semi-annual inspections of the groundwater monitoring network and sampling equipment.
- One annual inspection of the soil-gas monitoring network and sampling equipment.
- One annual inspection of final cover vegetation (i.e., biology inspection of the evapotranspirative [ET] Cover).
- Four quarterly inspections of the final cover surface (i.e., physical features excluding the vegetation covered in the biology inspection), storm-water diversion structures, fence, locks, gates, signs, and survey monuments.

This CY 2014 report is organized as follows:

- Chapter 1 presents background information, purpose and scope, and report organization.
- Chapter 2 provides a description of the final cover system, compliance monitoring system (groundwater and soil-gas), storm-water diversion structures, and security fence (fence, locks, gate, signage, and survey monuments).
- Chapter 3 presents monitoring and inspection, maintenance, and repair requirements.
- Chapter 4 presents groundwater monitoring activities and results.
- Chapter 5 presents soil-gas monitoring activities and results.
- Chapter 6 presents inspection, maintenance, and repair activities and results.
- Chapter 7 summarizes regulatory activities.
- Chapter 8 presents a general summary and conclusions for the 2014 reporting period.
- Chapter 9 lists the references cited in this report.

Annexes are provided that include CY 2014 supporting information as follows:

- Annex A Groundwater Monitoring Forms and Reports
- Annex B Soil-Gas Monitoring Forms and Reports
- Annex C Post-Closure Inspection Forms
- Annex D Chemical Waste Landfill Biology Report

2.0 CHEMICAL WASTE LANDFILL POST-CLOSURE CARE CONDITIONS

The CWL is a 1.9-acre remediated interim status landfill located in the southeastern corner of SNL/NM Technical Area III (Figures 2-1 and 2-2) undergoing post-closure care in accordance with the PCCP (NMED October 2009 and subsequent revisions). From 1962 until 1981, the CWL was used for the disposal of chemical and solid waste generated by SNL/NM research activities. Additionally, a small amount of radioactive waste was disposed of during the operational years. Disposal of liquid waste in unlined pits and trenches ended in 1981, and after 1982 all liquid waste disposal was terminated. From 1982 through 1985, only solid waste was disposed of at the CWL, and after 1985 all waste disposal ended. The CWL was also used as a hazardous waste drum-storage facility from 1981 to 1989. A summary of the CWL disposal history is presented in the Closure Plan (SNL/NM December 1992) along with a waste inventory based upon available disposal records and information.

2.1 Background

Two voluntary corrective measures (VCMs) were conducted during closure of the CWL. A soil-vapor extraction (VE) VCM was conducted from 1997 through 1998 to reduce the concentrations of VOC soil gas in the vadose zone, to control the VOC soil-gas plume, and to reduce groundwater trichloroethene (TCE) concentrations below the regulatory standard of 5 micrograms per liter (μ g/L). TCE concentrations in groundwater have been below 5 μ g/L since completion of the VE VCM in 1998. Following the VE VCM, the CWL Landfill Excavation (LE) VCM was conducted from September 1998 through February 2002. All former disposal areas were excavated during the LE VCM. The excavation was backfilled and an ET cover was constructed over the landfill.

Additional information on the VCMs, other closure activities, and CWL current conditions can be found in the CWL Final RCRA Closure Report for the CWL (SNL/NM September 2010), the PCCP (NMED October 2009 and subsequent revisions), and the CWL Corrective Measures Study Report (SNL/NM December 2004). Detailed information on residual soil contamination at the CWL can be found in Part 3, Section 3.1 and Table 3-1 of the PCCP (NMED October 2009 and subsequent revisions).

2.2 Final Cover System

The CWL final cover is a centrally crowned "at-grade" ET Cover designed to minimize infiltration of moisture into the former disposal area and to minimize long-term maintenance consistent with 40 CFR 264.111(a). The crown of the cover slopes to the north and south at a 1-percent grade, and east to west at a 3-percent grade to minimize erosion losses and control run-on/run-off. The ET Cover consists of two discrete layers; a 3-foot-thick native soil layer installed from 4 feet below ground surface (bgs) to 1 foot bgs, and a topsoil layer (approximately 1.5-feet thick) installed from 1 foot bgs to the local grade. The topsoil layer was revegetated with native plants

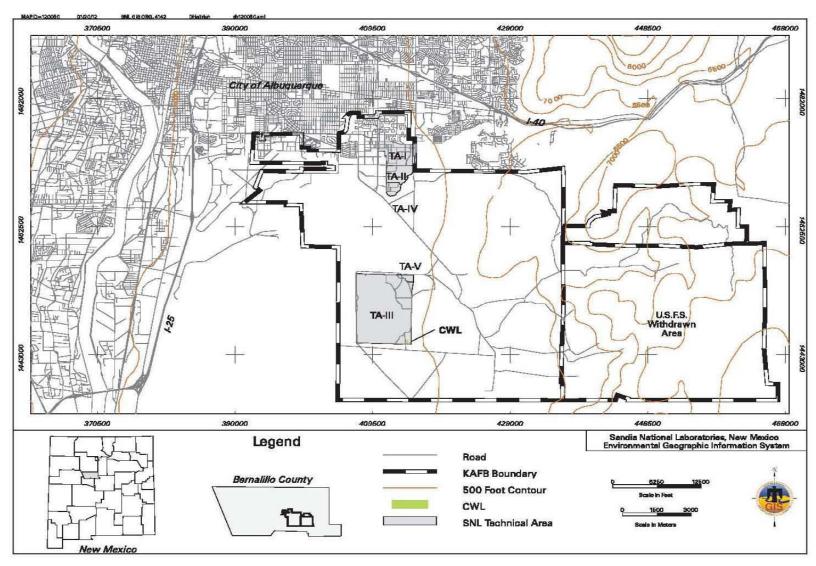


Figure 2-1
Location of the Chemical Waste Landfill with respect to Kirtland Air Force Base and the City of Albuquerque

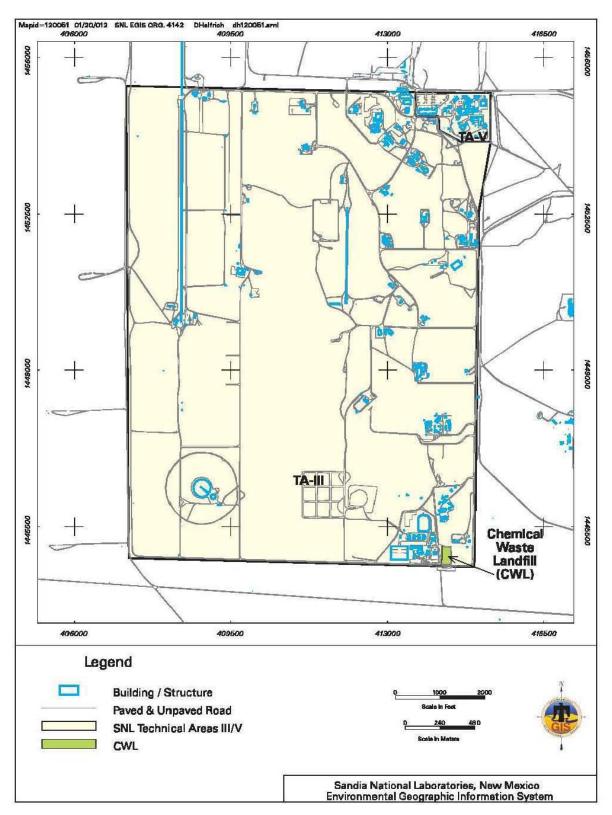


Figure 2-2
Location of the Chemical Waste Landfill within Technical Area III

according to the specifications contained in the Remedial Action Proposal, Annex I, CMS Report (SNL/NM December 2004). Figure 2-3 shows a conceptual schematic profile of the ET Cover and Figure 2-4 shows the central crown and surface drainage patterns.

2.3 Compliance Monitoring System

The compliance monitoring system includes a groundwater monitoring well network and a soilgas monitoring well network, which are described in the following sections.

2.3.1 Groundwater Monitoring Network

Groundwater monitoring is performed to ensure the protection of groundwater during the compliance and post-closure care periods. The CWL groundwater monitoring network consists of four NMED-approved monitoring wells that monitor the uppermost part of the regional aquifer in accordance with the requirements of 40 CFR 264.99. The four wells are described below and their locations are shown in Figure 2-4.

- One hydraulically upgradient background well CWL-BW5, and
- Three hydraulically downgradient compliance wells CWL-MW9, CWL-MW10, and CWL-MWL11.

Well-completion diagrams for the groundwater monitoring wells are provided in Attachment 2 of the PCCP (NMED October 2009 and subsequent revisions).

2.3.2 Soil-Gas Monitoring Network

The soil-gas monitoring network is designed to ensure the protection of groundwater quality by providing early detection data to indicate whether the VOC soil-gas plume has the potential to contaminate groundwater at concentrations exceeding regulatory concentration limits. The five multiport wells, shown in Figure 2-4, are designed to monitor the vadose zone at various depths beneath the CWL in the area most contaminated by past disposal of organic liquid waste. The wells and their depth-specific sampling ports are as follows:

- D1 Sampling Ports at 100, 160, 240, 350, and 470 feet bgs (5 ports)
- D2 Sampling Ports at 120, 240, 350, 440, and 470 feet bgs (5 ports)
- D3 Sampling Ports at 120, 170, 350, 440, and 480 feet bgs (5 ports)
- UI1 Sampling Ports at 40, 80, and 120 feet bgs (3 ports)
- UI2 Sampling Ports at 36, 76, and 136 feet bgs (3 ports)

Well-completion diagrams for all of the soil-gas monitoring wells are provided in Attachment 3 of the PCCP (NMED October 2009 and subsequent revisions).

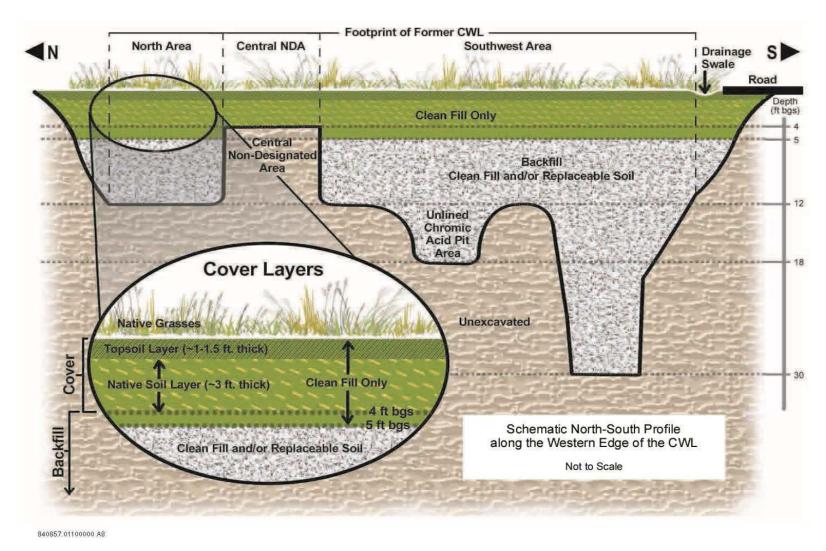
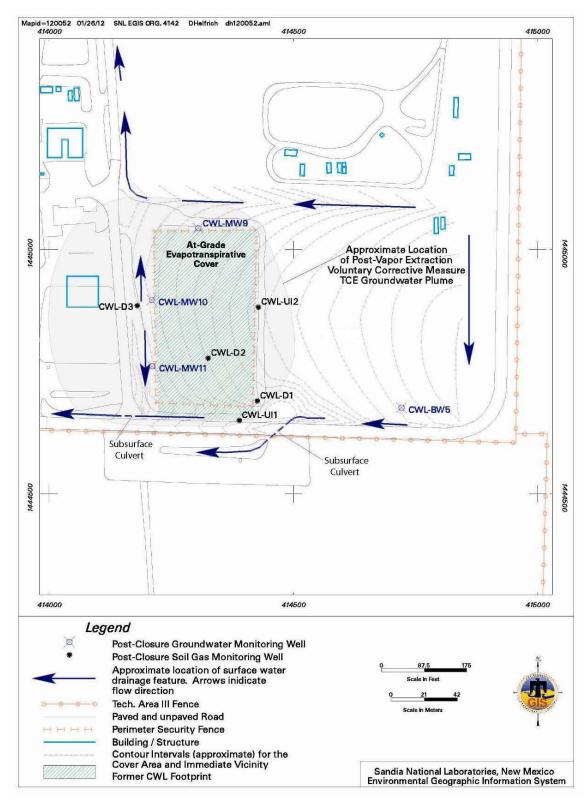
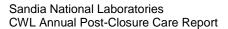


Figure 2-3
Schematic Profile of the Chemical Waste Landfill Evapotranspirative Cover




Figure 2-4
Chemical Waste Landfill Surface Drainage Patterns and Monitoring Networks

2.4 Storm-Water Diversion Structures

The function of the storm-water diversion features associated with the CWL is to minimize soil erosion caused by storm-water run-on and run-off and to reduce the amount of water that could potentially percolate into the former disposal area. Drainage features are shown in Figure 2-4 and include: ET Cover surface topography/slopes that direct water away from and off the ET Cover surface; road ditches; boundary swales; and two ditch drainage culverts at the southeastern and southwestern corners of the CWL that divert surface-water from the road ditch away from the CWL. The slight northeast and southeast inflection of the surface topography to the east of the ET Cover prevents significant run-on by directing the upgradient surface water toward the northern and southern boundary swales (Figure 2-4). Precipitation that falls directly on the ET Cover is diverted toward the boundary swales that intersect at the northwestern and southwestern corners of the site; its impact is minimized by the native vegetation, the central crown, and gently sloping topography (approximately 3-percent grade from east to west) of the ET Cover surface.

2.5 Security Fence

The location of the perimeter security fence is shown in Figure 2-4. It is a four-strand, barbed-wire fence with two gates. The gates remain locked except during inspections, maintenance, and monitoring activities. The keys to the locks are controlled by authorized personnel. Warning signs are posted on all sides of the CWL fence at 100-foot intervals and at the gates.

Calendar Year 2014

This page intentionally left blank.

3.0 MONITORING AND INSPECTION REQUIREMENTS

Monitoring, inspection, maintenance, and repair requirements are defined in the PCCP Attachment 1 (NMED October 2009 and subsequent revisions) and briefly summarized in this chapter. Monitoring requirements include groundwater and soil-gas, which generate empirical data that are evaluated to assess site conditions during the compliance and post-closure care periods. Inspection requirements apply to the final cover, storm-water diversion structures, compliance monitoring system, and security fence. Emergency equipment required by the CWL Contingency Plan (PCCP Attachment 6) is also subject to routine inspections. Maintenance and/or repairs are performed based upon the inspection results. Inspection, maintenance, and repair are performed to ensure the adequate performance of the ET Cover, monitoring networks, and surface features throughout the post-closure care period.

Monitoring, inspection, and maintenance/repair activities were conducted in CY 2014 in accordance with PCCP Attachment 1, Sections 1.8 through 1.10. Results of CY 2014 monitoring, inspection, and repair activities are presented in Chapters 4.0, 5.0, and 6.0. The following sections provide information specific to the requirements for each type of monitoring and inspection activity under the PCCP.

3.1 Monitoring Requirements

The frequency, parameters/constituents of concern, and methods for groundwater and soil-gas monitoring are summarized in Table 3-1. The groundwater and soil-gas monitoring networks are described in Section 2.2.1 and 2.2.2 respectively. The groundwater and soil-gas monitoring requirements are detailed in PCCP Attachment 1, Section 1.8. Sampling and analysis plans (SAPs) in PCCP Attachments 2 and 3, respectively, describe the procedures, methods, and analytical protocols for collecting and analyzing groundwater and soil-gas samples.

Table 3-1
Chemical Waste Landfill Groundwater and
Soil-Gas Monitoring Frequency, Parameters, and Methods

Monitoring System	Monitoring Frequency	Monitoring Parameters/ Constituents of Concern	Monitoring Method
Groundwater	Semi-Annual ^a	TCE by EPA Method 8260 ^b and Cr and Ni by EPA Method 6020 ^b	Sampling and Analysis per PCCP Attachment 2
Soil-Gas	Annual	EPA Compendium Method TO-14 VOCs ^c or equivalent ^d	Sampling and Analysis per PCCP Attachment 3

Notes:

^aSemi-Annual: An enhanced list of constituents must be analyzed on an annual basis (see Section 1.8.1.1 of PCCP Attachment 1).

^bEPA November 1986.

^cEPA January 1999a. See Table 1-5 in PCCP Attachment 1 for the list of the TO-14 VOCs.

^dUse of an analytical method equivalent to TO-14, such as EPA Method TO-15, was approved by NMED in February 2012 as part of a PCCP modification (Kieling February 2012).

EPA = U.S. Environmental Protection Agency.

For all groundwater monitoring events, environmental samples must be analyzed for TCE, chromium, and nickel. Additionally, during one semi-annual event each year, environmental samples must be analyzed for an enhanced list of VOCs comprised of 1,1,2-trichloro-1,2,2-trifluoroethane (Freon 113), tetrachlorethene (PCE), 1,1-dichloroethene (1,1-DCE), chloroform, and trichlorofluoromethane (Freon 11). Groundwater surface elevation must be measured each time groundwater is sampled and the groundwater flow rate, hydraulic gradient, and flow direction must be determined at least annually.

Soil-gas monitoring must be performed annually in accordance with the Soil-Gas SAP (PCCP Attachment 3) using U.S. Environmental Protection Agency (EPA) Compendium Method TO-14 (EPA January 1999a) or equivalent (i.e., such as the newer method TO-15 [EPA January 1999b]) to ensure the collection of data in a manner consistent with historic soil-gas monitoring. Consistency in sampling and analysis is necessary so that results can be evaluated over time to determine changes/trends in soil-gas concentrations.

3.2 Inspection, Maintenance, and Repair Requirements

Inspection requirements for the final cover system, storm-water diversion structures, compliance monitoring system, security fence, and emergency equipment are briefly summarized in this section and detailed in PCCP Attachment 1, Section 1.9. All inspections were performed by personnel who meet the qualification and training requirements of PCCP Attachment 5. The schedule for implementing inspections and prescribed maintenance and/or repairs is provided in PCCP Attachment 1, Section 1.10, Table 1-6. Maintenance and/or repairs are performed as needed based upon the inspection results.

3.2.1 Final Cover System Inspection/Maintenance/Repair Requirements

Inspection of the final cover includes vegetation inspection and monitoring by the staff biologist (i.e., biology inspection) and cover inspection by a field technician.

3.2.1.1 Vegetation Inspection and Monitoring

Achieving and maintaining a sustainable native plant community on the final cover is an important component of overall ET Cover performance. Vegetation minimizes erosion by stabilizing the ET Cover surface and reduces infiltration of surface water by transferring soil moisture from the ET Cover to the atmosphere through transpiration.

Cover vegetation monitoring is to be accomplished in a two-phase approach. The first phase concentrates on establishing the vegetation on the ET Cover from seed to a mature plant community such that successful revegetation criteria (defined in PCCP Attachment 1 Section 1.9) are met. These criteria are provided below.

 Total percent foliar coverage equals 20 percent (i.e., 20 percent of the land surface is covered with living plants versus 80 percent bare surface area);

- Of the 20 percent total foliar coverage, 50 percent or greater comprises native perennial species, and 50 percent or less comprises annual species; and
- No contiguous bare spots greater than 200 square feet (approximately 14 by 14 feet).

During this first phase of vegetation inspection and monitoring a staff biologist must inspect and document the inventory of the main flora populating the cover on a quarterly basis. These inspections are to be documented on the Biology Inspection Form/Checklist (PCCP Attachment 4 or equivalent) and include inspecting the cover for contiguous areas lacking vegetation in excess of 200 square feet, signs of animal intrusion, and deep-rooted plants. Repairs required as a result of the inspections to address vegetation parameters not meeting PCCP specifications are to be performed as described in Section 3.2.1.3. At the end of each CY, the staff biologist must compile the results of the quarterly inspections, summarize local climate trends, and present recommendations in a summary report to be included in the annual CWL post-closure care report submitted to NMED.

Once successful revegetation criteria are met, the second phase of cover vegetation inspection and monitoring begins. During this phase the staff biologist inspection frequency changes to annual. The biology inspection is to occur near the end of the growing season (August-September) to most accurately determine the coverage of living plants. As with the first phase, the inspection is to be documented on the Biology Inspection Form/Checklist (PCCP Attachment 4 or equivalent), include inspection results for the same parameters, and be documented in a summary report along with a summary of local climate trends and recommendations.

3.2.1.2 Cover Inspection Requirements

Cover inspections are required to be performed by a field technician on a quarterly basis to assess the physical integrity of the ET Cover. Settlement of the cover surface in excess of 6 inches, erosion of the cover soil in excess of 6 inches deep, areas of ponding water, animal intrusion burrows in excess of 4 inches in diameter, contiguous areas lacking vegetation in excess of 200 square feet, and any other conditions that may impact the cover integrity must be documented on the Post-Closure Inspection Form/Inspection Checklist (PCCP Attachment 4 or equivalent). During the first phase of quarterly cover vegetation monitoring described in Section 3.2.1.1, documentation of animal intrusion burrows in excess of 4 inches in diameter and contiguous areas lacking vegetation in excess of 200 square feet are addressed on the Biology Inspection Form/Checklist (or equivalent). During the second phase of annual cover vegetation monitoring, these inspection parameters must be noted by the field technician on the Post-Closure Inspection Form/Checklist (or equivalent).

3.2.1.3 Cover Repairs

Cover damage exceeding PCCP specifications must be repaired within 60 days to a condition that meets or exceeds the original design. However, repairs to fix inadequate cover vegetation may be delayed until the appropriate growing season if approved by NMED in advance, and if measures are taken as needed to prevent excessive erosion of the ET Cover during the delay

period. Repairs to the cover are to be completed using materials consistent with the cover installation specifications in accordance with PCCP Attachment 1, Section 1.9.1.3.

3.2.2 Storm-Water Diversion Structure Inspection Requirements

Inspection of the storm-water diversion structures is required on a quarterly basis to verify structural integrity and to ensure adequate performance. These inspections are to be performed at the same time as the cover inspections. Erosion of the channels or sidewalls in excess of 6 inches deep, accumulations of silt greater than 6 inches deep, or debris that blocks more than one-third of the channel width must be documented on the Post-Closure Inspection Form/Inspection Checklist (PCCP Attachment 4 or equivalent). Repairs, if needed, will be completed within 60 days.

3.2.3 Monitoring Well Network Inspection Requirements

Inspection of monitoring wells and sampling equipment is required at the same frequency as the associated monitoring, and is to be performed concurrently with all groundwater and soil-gas monitoring events. Inspections must be documented on the Post-Closure Inspection Form/Inspection Checklist (PCCP Attachment 4 or equivalent) and address the condition of the components including protective casings and bollards, wellhead covers/caps/locks, soil-gas sampling ports, well identification markings, and passive venting BaroBalls™ or equivalent devices. Sampling pumps and tubing are inspected during each sampling event (pumps are not dedicated to the wells). Pump replacement and maintenance/repair, and tubing replacement are performed on an as-needed basis based upon pump and tubing performance, inspections, and review of analytical sampling results. Accumulation of wind-blown plants and debris that would interfere with any of the groundwater or soil-gas monitoring network components will also be documented and removed during these inspections, or within 60 days.

3.2.4 Security Fence Inspection Requirements

Inspection of the fence, gates, locks, and warning signs at the CWL is required on a quarterly basis and is to be performed concurrently with the cover inspection. The condition of the fence, including fence wires, posts, gates, locks, and warning signs, is to be inspected and documented on the Post-Closure Inspection Form/Inspection Checklist (PCCP Attachment 4 or equivalent). Accumulation of wind-blown plants and debris on the fence that would obscure warning signs or block access to the CWL will be documented during the inspection and the material removed within 60 days. Local survey monuments must also be inspected and excess soil and/or vegetation covering these features will be removed within 60 days.

3.2.5 Emergency Equipment Inspection Requirements

Inspection of emergency equipment is required on a quarterly basis. Emergency equipment is maintained at the nearby Corrective Action Management Unit (CAMU) for use at the CWL, if necessary. A list of emergency equipment and its location is provided in PCCP Attachment 6, Table 6-4.

4.0 GROUNDWATER MONITORING RESULTS

This chapter presents groundwater monitoring activities (i.e., sampling and analysis), analytical results, and data evaluation for CY 2014 in accordance with PCCP Attachment 1, Sections 1.8 and 1.12, and Attachment 2 (NMED October 2009 and subsequent revisions). Groundwater sampling field activities are described in Section 4.1, analytical laboratory results and a discussion of data quality are presented in Section 4.2, data evaluation requirements and results are presented in Section 4.3, and hydrogeologic information on the regional aquifer is presented in Section 4.4. A summary of groundwater monitoring activities and results is provided in Section 8.1.

4.1 Groundwater Sampling Field Activities

This section describes groundwater monitoring activities conducted at the CWL in conformance with the CWL Groundwater SAP, PCCP Attachment 2 (NMED October 2009 and subsequent revisions), that describes the procedures, methods, and analytical protocols for collecting and analyzing groundwater samples. The data quality objective (DQO) for groundwater monitoring is to collect accurate and defensible data of high quality to determine the concentrations of hazardous constituents in the groundwater in the uppermost aquifer underlying the CWL. Field forms and documentation that address calibration of equipment, well purging and water quality measurements, and equipment decontamination activities are provided in Annex A of this report and filed in the SNL/NM Records Center.

Two semi-annual groundwater sampling events were conducted in CY 2014.

- The first sampling event was conducted January 9-15, 2014. Groundwater samples were collected from monitoring wells CWL-BW5, CWL-MW9, CWL-MW10, and CWL-MW11, and a duplicate sample was collected from CWL-BW5. Samples collected from all wells were analyzed for TCE, chromium, nickel, and the enhanced list of VOCs. The enhanced list of VOCs includes 1,1-dichloroethene (1,1-DCE), 1,1,2-trichloro-1 2,2-trifluoroethane (Freon 113), chloroform, tetrachloroethene (PCE), and trichlorofluoromethane (Freon 11) in addition to TCE.
- The second sampling event was conducted July 7-11, 2014. Groundwater samples were collected from monitoring wells CWL-BW5, CWL-MW9, CWL-MW10, and CWL-MW11, and a duplicate sample was collected from CWL-MW9. Samples collected from all wells were analyzed for TCE, chromium, and nickel.

4.1.1 Well Purging

Purging removes stagnant water from the well so that a representative groundwater sample can be collected. The minimum purge requirement for a portable piston pump is one saturated casing volume (the volume of all static water in the well screen plus the borehole annulus around the saturated screen interval). During groundwater sampling at the CWL, purging

continued until four stable field measurements for temperature, specific conductance (SC), potential of hydrogen (pH), and turbidity were obtained in all monitoring wells that did not purge dry. As specified in PCCP Attachment 2, Section 2.12, groundwater stability is considered acceptable when four successive measurements are less than five nephelometric turbidity units (NTU) for turbidity or within a range of 10 percent for turbidity values greater than 5 NTU, pH is within 0.1 units, temperature is within 1.0 degree Celsius, and SC is within five percent as micromhos per centimeter. Field measurements for water quality parameters were collected using a YSITM EXO Water Quality Meter and a HACHTM Model 2100Q portable turbidity meter. Additional water quality measurements included oxidation-reduction potential (ORP) and dissolved oxygen (DO).

A portable Bennett Company groundwater sampling system was used to purge and collect groundwater samples from all wells. Minimum purge requirements were satisfied at all monitoring wells except CWL-MW10. In accordance with PCCP Attachment 2, Section 2.12, this monitoring well was purged to dryness, allowed to recover, and then sampled to collect the most representative groundwater sample possible given the low yield of this well. In an effort to decrease flow rate for CWL-MW10, the existing sampling system is equipped with a flow-meter valve located along the discharge line, and with small diameter tubing. During the purging process at CWL-MW10, the flow rate was continually adjusted to achieve as low a flow rate as possible without causing the pump to fail. This represents a "best faith effort" to purge the wells at the slowest rate possible given equipment limitations as specified in PCCP Attachment 2, Section 2.12.

During January approximately 16.5 gallons were purged from monitoring well CWL-MW10 prior to the well going dry. The average flow rate was 0.14 gallons per minute (gpm), and the estimated flow rate was 0.12 gpm during the final four gallons (equivalent to 0.53 and 0.45 liters per minute, respectively). During July approximately 18 gallons were purged from CWL-MW10 prior to the well going dry. The average flow rate was 0.078 gpm, and the estimated flow rate was 0.065 gpm during the final four gallons (equivalent to 0.30 and 0.25 liters per minute, respectively).

4.1.2 Field Quality Control

Field quality control (QC) samples were collected as part of each sampling event and included environmental duplicate, equipment blank, trip blank, and field blank samples. The sampling pump and tubing bundle used to collect groundwater samples were decontaminated prior to sampling each monitoring well.

Duplicate samples were analyzed to estimate the overall reproducibility of the sampling and analysis process and were collected immediately after the original environmental sample to reduce variability caused by time and/or sampling mechanics. Equipment blank (also referred to as a rinsate blank) samples were collected prior to collection of an environmental sample, to verify the equipment decontamination process. Trip blank samples are used to evaluate potential contamination by VOCs during sampling, shipment, and the laboratory process. Field blank samples are used to evaluate potential sample contamination by VOCs resulting from ambient field conditions.

The field QC samples were submitted for analysis with the groundwater samples. A brief explanation of the field QC sampling protocol for the January and July sampling events is provided below. Analytical results are presented in Section 4.2.2.

First Semi-Annual Sampling Event – January 9-15, 2014

A duplicate environmental sample was collected from CWL-BW5. One equipment blank sample was collected prior to sampling CWL-BW5 and submitted for all analyses. A total of five trip blank samples were submitted with the January 2014 groundwater samples and analyzed for the enhanced list of VOCs. Two field blank samples were collected for VOC analysis (enhanced list) by pouring deionized water into sample containers at the CWL-BW5 and CWL-MW10 sample locations to simulate the transfer of environmental samples from the sampling system to the sample container.

Second Semi-Annual Sampling Event - July 7-11, 2014

A duplicate environmental sample was collected from CWL-MW9. One equipment blank sample was collected prior to sampling CWL-MW9. The samples were submitted for all analyses. A total of five trip blank samples were submitted with the July 2014 groundwater samples and analyzed for TCE. Four field blank samples were collected for TCE analysis by pouring deionized water into sample containers at each CWL monitoring well location to simulate the transfer of environmental samples from the sampling system to the sample container.

4.1.3 Waste Management

Purge and decontamination water generated from sampling activities were placed into 55-gallon containers and stored at the Environmental Resources Field Office less than 90-day waste accumulation area. Approximately 260 gallons of wastewater were generated during each groundwater sampling event (total of 520 gallons). Separate waste characterization samples were collected from purge and decontamination water and analyzed for discharge parameters. All wastewater was discharged to the sanitary sewer in accordance with Albuquerque Bernalillo County Water Utility Authority requirements after waste characterization data were compared to discharge limits and determined to meet these requirements.

Personal protective equipment and other solid waste generated during January and July 2014 monitoring activities were packaged into 5-gallon plastic buckets and managed as hazardous waste. This waste was managed at the Hazardous Waste Handling Unit prior to disposal at a permitted off-site facility.

4.2 Laboratory Results

Groundwater and field QC samples were submitted to GEL Laboratories for analyses. Samples were analyzed in accordance with applicable EPA analytical methods. For comparison, hazardous constituent concentration limits from the PCCP are included in the analytical results

tables. Analytical results that are above the analytical laboratory method detection limit (MDL) but below the practical quantitation limit (PQL) are qualified as estimated values and designated with a "J" qualifier. Analytical laboratory reports, including certificates of analyses, analytical methods, MDLs, PQLs, dates of analyses, results of QC analyses, and data validation reports are filed in the SNL/NM Records Center.

4.2.1 Environmental Sample Results

Table 4-1 summarizes TCE results and Table 4-2 summarizes chromium and nickel results for the January and July 2014 groundwater sampling events. Table 4-3 summarizes results for the additional VOCs (enhanced list) included in the January 2014 event. Table 4-4 summarizes field water quality measurements collected prior to sampling for both events. Field water quality measurements include turbidity, pH, temperature, SC, ORP, and DO. A summary of the results from the January and July sampling events is provided below. Statistical evaluation and comparison of results to concentration limits specified in the PCCP is provided in Section 4.3.

Table 4-1
Summary of Trichloroethene Results
Chemical Waste Landfill Groundwater Monitoring
Analytical Method SW846-8260B^a
Calendar Year 2014

Well ID	Result (µg/L)	MDL (µg/L)	PQL (µg/L)	Laboratory Qualifier ^b	Validation Qualifier ^b
January 2014 Sampling Event					
CWL-BW5	ND	0.300	1.00	U	
CWL-BW5 (Duplicate)	ND	0.300	1.00	U	
CWL-MW9	ND	0.300	1.00	U	
CWL-MW10	2.75	0.300	1.00		
CWL-MW11	ND	0.300	1.00	U	
July 2014 Sampling Event					
CWL-BW5	ND	0.300	1.00	U	
CWL-MW9	ND	0.300	1.00	U	
CWL-MW9 (Duplicate)	ND	0.300	1.00	U	
CWL-MW10	1.12	0.300	1.00		
CWL-MW11	ND	0.300	1.00	U	

Notes:

PQL

 μ g/L = Micrograms per liter.

ND = Not detected (at method detection limit).

= Practical quantitation limit. The lowest concentration of analytes in a sample that can be reliably determined within specified limits of precision and accuracy by the applicable method under routine laboratory operating conditions.

U = Analyte not present or concentration is below the method detection limit.

^aU.S. Environmental Protection Agency, 1986 (and updates), "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3rd edition.

^bLaboratory/Validation Qualifier - If cell is blank (--), then all quality control samples met acceptance criteria with respect to submitted samples. See explanation for "U" laboratory qualifier below.

MDL = Method detection limit. The minimum concentration or activity that can be measured and reported with 99% confidence that the analyte is greater than zero, analyte is matrix-specific.

Table 4-2 Summary of Chromium and Nickel Results Chemical Waste Landfill Groundwater Monitoring Analytical Method SW846-6020^a Calendar Year 2014

		Result	MDL	PQL	Laboratory	Validation
Well ID	Analyte	(mg/L)	(mg/L)	(mg/L)	Qualifier ^b	Qualifier ^b
January 2014 Sampling E	vent					
CWL-BW5	Chromium	ND	0.002	0.010	U	
CVVL-BVV3	Nickel	0.00267	0.0005	0.002		
CWL-BW5 (Duplicate)	Chromium	ND	0.002	0.010	U	
CVVL-BVV3 (Duplicate)	Nickel	0.0027	0.0005	0.002		
CWL-MW9	Chromium	ND	0.002	0.010	U	
CVVL-IVIVV9	Nickel	0.00187	0.0005	0.002	J	J-
CWL-MW10	Chromium	ND	0.002	0.010	U	
CVVL-IVIVV 10	Nickel	0.00311	0.0005	0.002		
CWL-MW11	Chromium	ND	0.002	0.010	U	
CVVL-IVIVV I I	Nickel	0.00284	0.0005	0.002		
July 2014 Sampling Even	it					
CWL-BW5	Chromium	ND	0.002	0.010	U	
CVVL-BVV3	Nickel	0.00166	0.0005	0.002	J	J-
CWL-MW9	Chromium	ND	0.002	0.010	U	
CVVL-IVIVV9	Nickel	0.0015	0.0005	0.002	J	J-
CWL MWG (Duplicate)	Chromium	ND	0.002	0.010	U	
CWL-MW9 (Duplicate)	Nickel	0.00162	0.0005	0.002	J	J-
CWL-MW10	Chromium	ND	0.002	0.010	U	
CVVL-IVIVV IO	Nickel	0.00239	0.0005	0.002		
CWL-MW11	Chromium	ND	0.002	0.010	U	
OVVE-IVIVV I I	Nickel	0.00142	0.0005	0.002	J	J-

Notes:

- J = Amount detected is below the practical quantitation limit (PQL).
- J- = The associated numerical value is an estimated quantity with a suspected negative bias.
- U = Analyte is absent or below the method detection limit, if a number is shown units are mg/L.
- MDL = Method detection limit. The minimum concentration or activity that can be measured and reported with 99% confidence that the analyte is greater than zero, analyte is matrix-specific.
- mg/L = Milligrams per liter.
- ND = Not detected (at method detection limit).
- PQL = Practical quantitation limit. The lowest concentration of analytes in a sample that can be reliably determined within specified limits of precision and accuracy by the applicable method under routine laboratory operating conditions.

^aU.S. Environmental Protection Agency, 1986 (and updates), "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3rd edition.

bLaboratory/Validation Qualifier - If cell is blank (--), then all quality control samples met acceptance criteria with respect to submitted sample. See explanation for "B," "J," "J-," and "U" qualifiers below.

Table 4-3
Summary of Additional Volatile Organic Compound Results
Chemical Waste Landfill Groundwater Monitoring
Analytical Method SW846-8260B^a
January 2014

Well ID	Analyte	Result (µg/L)	MDL (µg/L)	PQL (µg/L)	Laboratory Qualifier ^b	Validation Qualifier ^b
CWL-BW5	1,1-Dichloroethene	ND	0.300	1.00	U	
	Chloroform	ND	0.300	1.00	U	
	Tetrachloroethene	ND	0.300	1.00	U	
	Trichlorofluoromethane	ND	0.300	1.00	U	
	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.50	5.00	U	
CWL-MW9	1,1-Dichloroethene	ND	0.300	1.00	U	
	Chloroform	ND	0.300	1.00	U	
	Tetrachloroethene	ND	0.300	1.00	U	
	Trichlorofluoromethane	ND	0.300	1.00	U	
	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.50	5.00	U	
CWL-MW9	1,1-Dichloroethene	ND	0.300	1.00	U	
(Duplicate)	Chloroform	ND	0.300	1.00	U	
	Tetrachloroethene	ND	0.300	1.00	U	
	Trichlorofluoromethane	ND	0.300	1.00	U	
	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.50	5.00	U	
CWL-MW10	1,1-Dichloroethene	ND	0.300	1.00	U	
	Chloroform	ND	0.300	1.00	U	
	Tetrachloroethene	ND	0.300	1.00	U	
	Trichlorofluoromethane	ND	0.300	1.00	U	
	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.50	5.00	U	-

Refer to footnotes at end of table.

Table 4-3 (Concluded) Summary of Additional Volatile Organic Compound Results Chemical Waste Landfill Groundwater Monitoring Analytical Method SW846-8260B^a January 2014

Well ID	Analyte	Result (µg/L)	MDL (µg/L)	PQL (µg/L)	Laboratory Qualifier ^b	Validation Qualifier ^b
CWL-MW11	1,1-Dichloroethene	ND	0.300	1.00	U	
	Chloroform	ND	0.300	1.00	U	
	Tetrachloroethene	ND	0.300	1.00	U	
	Trichlorofluoromethane	ND	0.300	1.00	U	
	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.50	5.00	U	

Notes:

^bLaboratory/Validation Qualifier - If cell is blank (--), then all quality control samples met acceptance criteria with respect to submitted samples.

MDL = Method detection limit. The minimum concentration or activity that can be measured and reported with 99% confidence that the analyte is greater than zero, analyte is matrix-specific.

 μ g/L = Micrograms per liter.

ND = Not detected (at method detection limit).

PQL = Practical quantitation limit. The lowest concentration of analytes in a sample that can be reliably determined within specified limits of precision and accuracy by the applicable method under routine laboratory operating conditions.

U = Analyte not present or concentration is below the method detection limit.

^aU.S. Environmental Protection Agency, 1986 (and updates), "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3rd edition.

Table 4-4
Summary of Field Water Quality Measurements^a
Chemical Waste Landfill Groundwater Monitoring
Calendar Year 2014

Well ID	Temperature (°C)	SC (µmho/cm)	ORP (mV)	рН	Turbidity (NTU)	DO (% Sat)	DO (mg/L)	
January 2014 Sampling Event								
CWL-BW5	19.20	935.0	263.1	6.99	0.94	76.9	7.07	
CWL-MW9	19.16	829.0	103.7	7.07	0.29	25.5	2.36	
CWL-MW10	17.13	742.5	64.4	7.17	1.90	21.1	2.03	
CWL-MW11	18.04	844.9	240.9	7.07	0.87	51.9	4.95	
July 2014 Sampling Event								
CWL-BW5	25.66	1135.9	279.4	6.90	0.30	84.7	6.88	
CWL-MW9	25.91	1029.6	183.1	6.95	0.21	38.8	3.14	
CWL-MW10	25.05	964.9	-18.1	7.05	1.76	34.9	2.87	
CWL-MW11	27.61	1105.8	300.2	6.94	0.36	65.9	5.18	

Notes:

^aField measurements collected prior to sampling.

°C = Degrees Celsius.
% Sat = Percent saturation.
DO = Dissolved oxygen.
mg/L = Milligrams per liter.

µmho/cm = Micromhos per centimeter.

mV = Millivolts.

ORP = Oxidation-reduction potential. NTU = Nephelometric turbidity units.

pH = Potential of hydrogen (negative logarithm of the hydrogen ion concentration).

SC = Specific Conductance.

First Semi-Annual Sampling Event – January 9-15, 2014

TCE was detected above the laboratory MDL in the CWL-MW10 sample at a concentration of 2.75 µg/L. No other VOCs (enhanced list) were detected.

Chromium was not detected above the laboratory MDL in any samples. Nickel was detected in all groundwater samples at concentrations ranging from 0.00187 milligrams per liter (mg/L) to 0.00311 mg/L.

Second Semi-Annual Sampling Event – July 7-11, 2014

TCE was only detected above the laboratory MDL in the CWL-MW10 sample at a concentration of 1.12 µg/L. There were no other detections of TCE.

Chromium was not detected above the laboratory MDL in any of the groundwater samples. Nickel was detected in all samples at concentrations from 0.00142 mg/L to 0.00239 mg/L.

4.2.2 Field Quality Control Sample Results

Tables 4-1 through 4-4 present results for samples collected in the January and July sampling events. Table 4-5 summarizes results of duplicate sample analyses and the calculated relative percent difference (RPD) values between the environmental and duplicate sample results for the January (CWL-BW5) and July (CWL-MW9) 2014 sample pairs. Nickel was the only analyte detected in both environmental-duplicate sample pairs; no VOCs or chromium were detected. RPD values for nickel and show good agreement (i.e., RPD values < 35 for metals).

One equipment blank sample was collected in January and analyzed for all constituents. Chloroform was detected in the January equipment blank sample at a concentration of 2.58 µg/L. No corrective action was necessary since chloroform was not detected in the associated environmental sample (i.e., CWL-BW5 sample). The equipment blank sample collected in July was analyzed for all constituents; no constituents were detected in the sample.

Table 4-5
Summary of Duplicate Sample Results
Chemical Waste Landfill Groundwater Monitoring
Calendar Year 2014

Well ID/Parameter	Environmental Sample (R1)	Duplicate Sample (R2)	RPD ^a				
January 2014 Sampling Event (CWL-BW5)							
Nickel (mg/L)	0.00267	0.0027	1				
July 2014 Sampling Event (CWL-MW9)							
Nickel (mg/L)	0.0015	0.00162	8				

Notes:

^aRPD = Relative percent difference is calculated with the following equation and rounded to the nearest whole number.

$$RPD = \frac{|R_I - R_2|}{I(R_I + R_2)/2I} \times 100$$

where: R₁

 R_1 = Environmental sample result.

R₂ = Duplicate sample result.

mg/L = Milligram(s) per liter.

Of the five trip blank samples and two field blank samples associated with the January sampling event, the only detection was chloroform in both of the field blank samples. No corrective action was required since chloroform was not detected in any of the environmental samples. The five trip blank samples and four field blank samples associated with the July sampling event were analyzed for TCE. TCE was detected in the field blank sample collected at the CWL-MW11 location at a concentration of $3.3~\mu g/L$. No corrective action was required as TCE was not detected in the associated environmental sample.

4.2.3 Data Quality

Field QC sample results met the sampling DQOs and validated the adequacy of the field sampling procedures and protocol. Internal laboratory QC samples were analyzed concurrently with all environmental samples in accordance with laboratory procedures and EPA methods. These samples included laboratory control samples, method blanks, matrix spike and matrix spike duplicate samples, surrogate spike samples, and replicate samples. The results were used to evaluate potential contamination associated with the laboratory analytical process and to determine the accuracy and precision of the analytical methods. All chemical data were reviewed and qualified in accordance with SNL/NM Administrative Operating Procedure (AOP) AOP 00-03, "Data Validation Procedure for Chemical and Radiochemical Data" (SNL/NM June 2014a). Minor issues documented during the data validation process are summarized below.

For the January 2014 sampling event, chloroform was detected at very low concentrations in both the equipment and field blank samples. It is a by-product of the deionized water purification process (i.e., chlorination) and is routinely detected in equipment blank and field blank samples at very low concentrations.

Although infrequent, the detection of TCE in the field blank sample collected at the CWL-MW11 during the July 2014 sampling event demonstrates that very low detections of VOCs are possible as a result of ambient conditions. Note that this sample was collected by pouring deionized water directly into the sample container to simulate the transfer of environmental samples from the sampling system to the sample container. The deionized water did not travel through the portable Bennett sampling system.

Based upon the data validation and review criteria, all analytical data were determined acceptable. Reported QC samples results were in compliance with analytical method and laboratory procedure requirements (i.e., technically defensible). Data Validation Reports and Contract Verification Review forms are provided in Annex A of this report and are filed in the SNL/NM Records Center.

4.2.4 Variances and Non-Conformances

No variances or non-conformances were identified during the January and July 2014 semiannual groundwater sampling events.

4.3 Data Evaluation

Groundwater monitoring is required to determine whether the groundwater beneath the CWL is in compliance with the groundwater protection standard under 40 CFR § 264.92 and for the determination of statistical significance under 40 CFR § 264.97(h). In accordance with PCCP Attachment 1, Section 1.8.1.2, statistical evaluation of groundwater monitoring results from new wells is not required until three years of groundwater sampling results have been obtained (i.e., minimum data set for statistical analysis as defined by the NMED is six analytical results). For replacement wells, historical groundwater sampling results are used to augment the data sets and increase the amount of data available for statistical analysis. Historical groundwater

data is limited to data obtained no earlier than May 1998 (i.e., near the completion of the VE VCM).

Statistical evaluation of the groundwater data includes results from CWL-BW5 (and historical background well CWL-BW4A), as well as CWL-MW9, CWL-MW10, and CWL-MW11. Wells CWL-MW9, CWL-MW10, and CWL-MW11 are new wells installed in 2010 and have been sampled eight times as of July 2014 (November-December 2010, July-August 2011, January and July 2012, January and July 2013, January and July 2014). Statistical evaluation of the results from these wells was first presented in the CY 2013 Annual Report. CWL-BW5 is a replacement well for CWL-BW4A. All results for CWL-BW5 and historic results for CWL-BW4A were used for the statistical evaluation presented in the following sections.

4.3.1 Statistical Assessment Requirements

Groundwater monitoring data are statistically evaluated on a well-by-well basis for each of the three hazardous constituents in accordance with the requirements stated in PCCP Attachment 1, Section 1.8.1.2. The hazardous constituents and their respective concentration limits are listed in Table 4-6. Prediction and confidence intervals are calculated and used to evaluate groundwater monitoring results. In addition, the cumulative percentage of sample results that are greater than the median (i.e., Median Test) is calculated to determine whether there is statistically significant evidence of increased contamination. If a result is below the analytical laboratory detection limits, the MDL for the constituent is used for statistical analysis. For duplicate analyses, only the highest detection is used for statistical analysis. If a detection is qualified as "not detected" during data validation due to blank contamination, the original result reported by the laboratory is used for statistical analysis. More detailed information regarding statistical assessment requirements is provided below. Statistical assessment results for CY 2014 groundwater monitoring data are presented in Section 4.3.2.

Table 4-6
Concentration Limits for the Hazardous Constituents of Concern at the Chemical Waste Landfill

Hazardous Constituent	Concentration Limit	Basis of Concentration Limit
Trichloroethene	5 μg/L	EPA MCL, 40 CFR § 264.94(b)
Chromium	0.050 mg/L	Table 1, 40 CFR § 264.94(a)(2)
Nickel	0.028 mg/L	SNL/NM background level, 40 CFR § 264.94(a)(1)

Notes:

CFR = Code of Federal Regulations

EPA = U.S. Environmental Protection Agency

MCL = Maximum contaminant level.

μg/L = Micrograms per liter. mg/L = Milligrams per liter.

Prediction and Confidence Intervals

The probability that each semi-annual sample result for a given hazardous constituent falls within the range of previous sample results is determined using prediction intervals. The prediction interval for a given hazardous constituent is the range between the 95% upper confidence limit (UCL) and the 95% lower confidence limit (LCL) of the mean. Therefore, the probability of a sample result for a given hazardous constituent falling within the range of previous sample results (i.e., between the LCL and the UCL) is 90%. Strictly for comparison, CY 2014 sample results are also compared to the historical range (minimum and maximum result derived from historical results not including CY 2014 results) to determine whether they fall within, below, or above the range of previous sample results.

The 95% LCL is also used to determine statistically significant evidence that the concentration limit for the particular hazardous constituent has been exceeded (NMED October 2009 and subsequent revisions). The calculated 95% LCL is compared to the concentration limit in Table 4-6. If it exceeds the concentration limit, this is considered statistically significant evidence that the concentration limit has been exceeded, and it triggers corrective action in accordance with PCCP Attachment 1, Section 1.8.3. Individual sample results are not directly compared to concentration limits, and if an individual result exceeds the concentration limit this does not constitute an exceedance requiring corrective action.

Median Test

The median value is calculated using all historic data prior to the sampling event(s) being evaluated. For example, the median value against which the July 2014 CWL-BW5/4A sample results are compared was calculated using all historic results obtained since May 1998 (i.e., completion of the VE VCM) not including the July 2014 sample results. For the next groundwater monitoring event, the median will be recalculated and will include the July 2014 sample results. If the cumulative percentage of results greater than the median for a given hazardous constituent is 80% or greater, that is considered statistically significant evidence of increased contamination. However, no action is required in the case of statistically significant evidence of increasing contamination unless the 95% LCL of the mean for a given constituent exceeds the respective concentration limit (NMED October 2009 and subsequent revisions).

4.3.2 Statistical Assessment Results

CY 2014 groundwater sampling data and statistical analysis for CWL-BW5/4A, CWL-MW9, CWL-MW10, and CWL-MW11 are discussed in this section. Statistical assessment results are presented in Table 4-7 and shown graphically in Figures 4-1 through 4-9.

Table 4-7
Statistical Assessment Results Summary
Chemical Waste Landfill
Calendar Year 2014 Sampling Results

Hazardous Constituent ^a	Minimum ^b	Maximum ^b	Mean ^c	Standard Deviation ^c	LCL ^c	UCL ^c	Distribution Type ^c	Median Test ^d	Concentration Limit Exceeded ^e ?
CWL-BW5/4A		ax		Doridion		332	. , , , ,	, modium root	
Chromium (mg/L)	0.00038	0.0125	0.00329	0.00312	0.00237	0.00421	Normal	43%	No
Nickel (mg/L)	0.00109	0.049	0.00544	0.0083	0.00299	0.00789	Normal	47%	No
TCE (µg/L)	0.1	0.78	0.35	0.134	0.311	0.389	Normal	3%	No
CWL-MW9									
Chromium (mg/L)	NA	NA	NA	NA	NA	NA	NA	NA	No
Nickel (mg/L)	0.00198	0.00435	0.00305	0.0011	0.00231	0.00379	Normal	40%	No
TCE (µg/L)	NA	NA	NA	NA	NA	NA	NA	NA	No
CWL-MW10									
Chromium (mg/L)	0.002	0.00325	0.00231	0.000569	0.00193	0.00269	Normal	20%	No
Nickel (mg/L)	0.00234	0.00707	0.0036	0.00158	0.00254	0.00466	Normal	20%	No
TCE (µg/L)	1.11	4.68	2.831	1.452	1.858	3.804	Normal	40%	No
CWL-MW11									
Chromium (mg/L)	0.002	0.00304	0.00227	0.00040019	0.002	0.00254	Normal	40%	No
Nickel (mg/L)	0.00172	0.00449	0.00276	0.00101	0.00208	0.00344	Normal	20%	No
TCE (µg/L)	NA	NA	NA	NA	NA	NA	NA	NA	No

Notes:

LCL = Lower confidence limit.

 μ g/L = Micrograms/liter.

NA = Not Applicable; constituent has not been detected in any samples from this monitoring well.

mg/L = Milligrams/liter.
TCE = Trichloroethene.

UCL = Upper confidence limit.

^aHazardous Constituents from CWL Permit Attachment 1, Section 1.4.1, Table 1-2 (Table 4-6 of this report).

^bMinimum and maximum result determined from historical data not including 2014 sample results.

^cMean, LCL, UCL, Standard Deviation, and Distribution Type determined using ProUCL statistical program.

^d Median Test is the cumulative percentage of sample results that are greater than the median.

^eExceedance determined by comparing the sample result (Tables 4-1, 4-2, and 4-3) against the concentration limit in CWL Permit Attachment 1, Table 1-2 (Table 4-6 of this report).

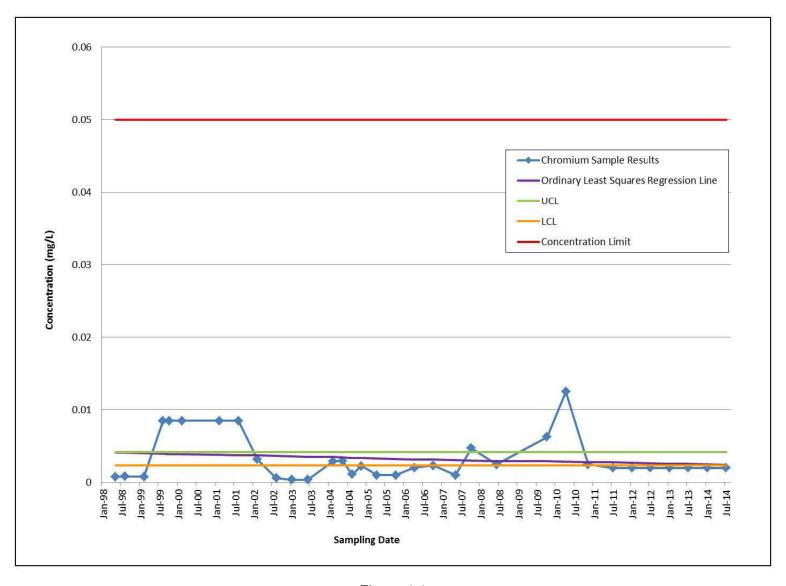


Figure 4-1 Chromium Control Chart for CWL-BW5/4A

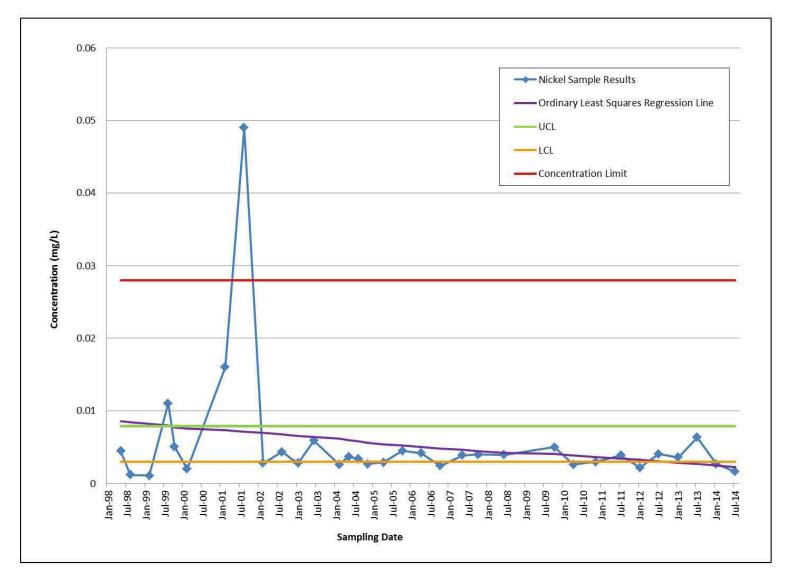


Figure 4-2 Nickel Control Chart for CWL-BW5/4A

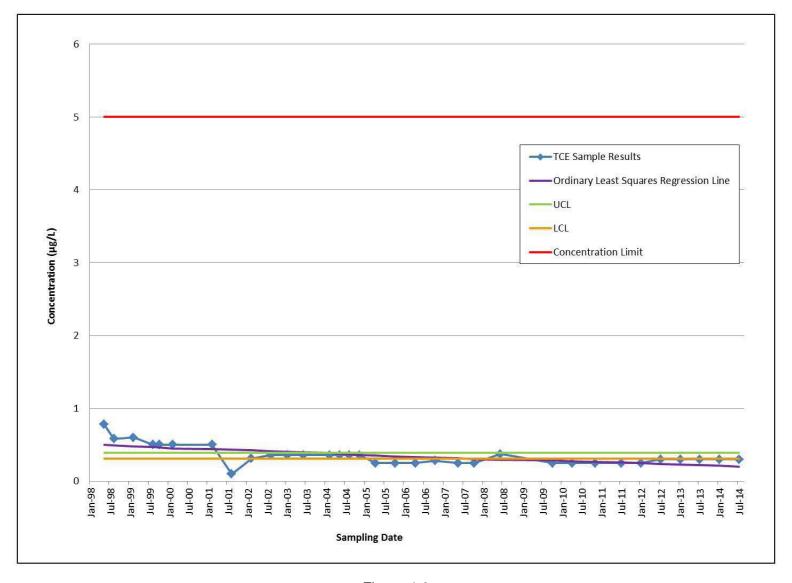


Figure 4-3
TCE Control Chart for CWL-BW5/4A

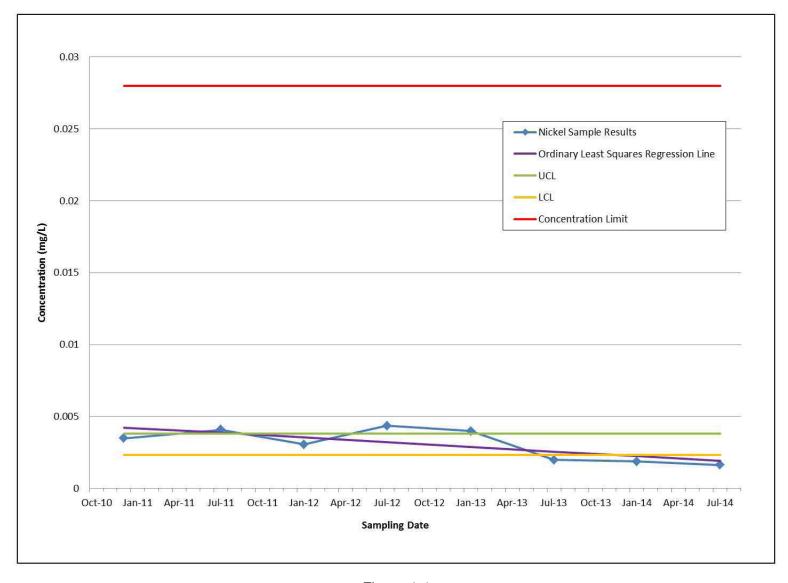


Figure 4-4
Nickel Control Chart for CWL-MW9

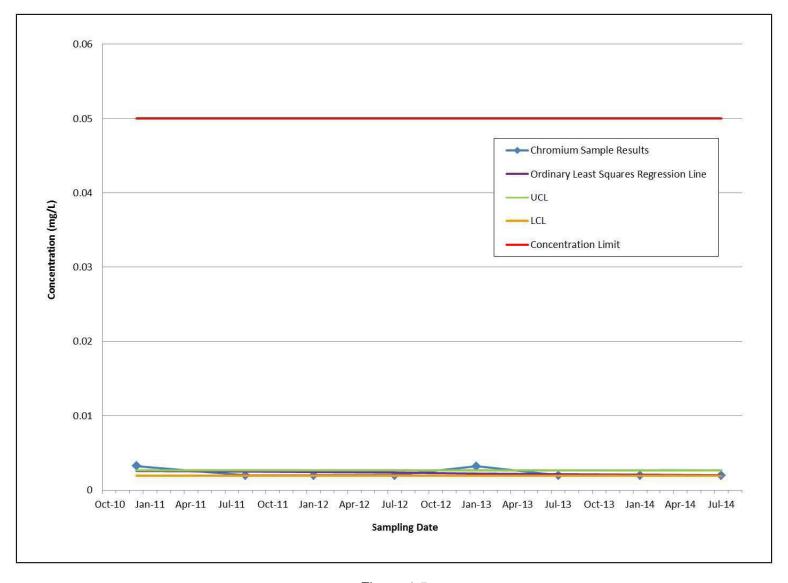


Figure 4-5 Chromium Control Chart for CWL-MW10

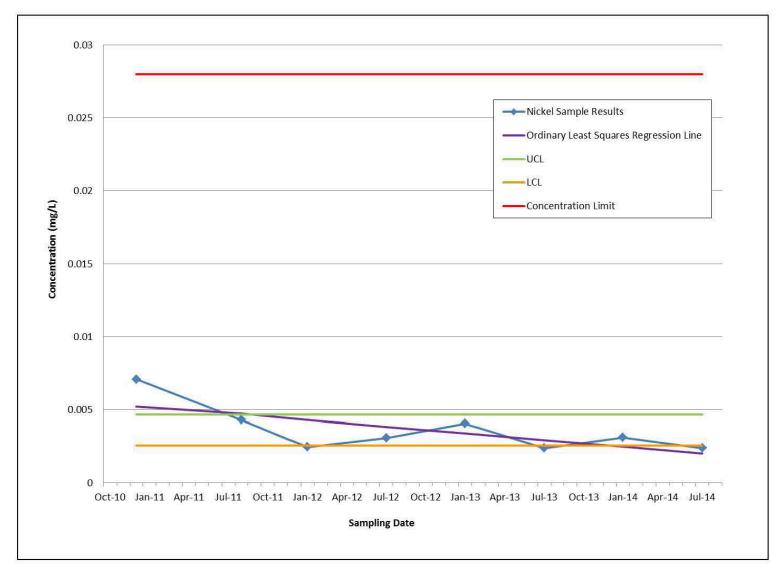


Figure 4-6
Nickel Control Chart for CWL-MW10

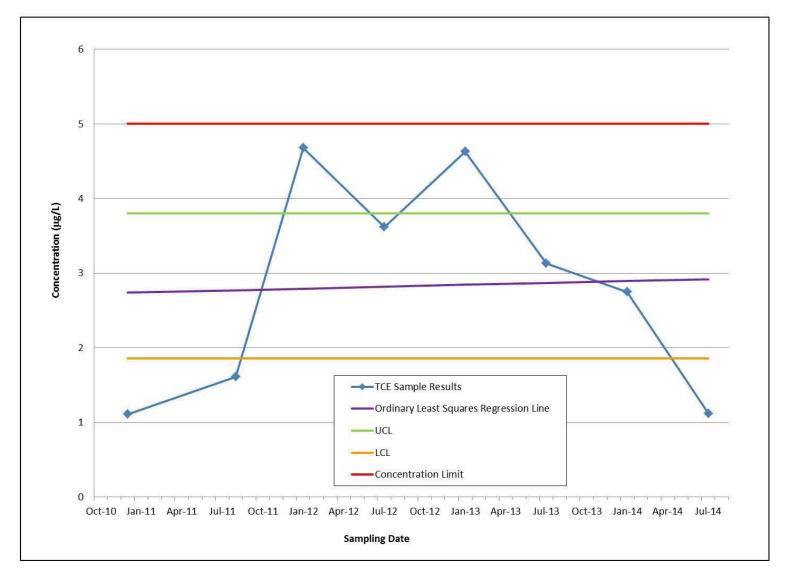


Figure 4-7
TCE Control Chart for CWL-MW10

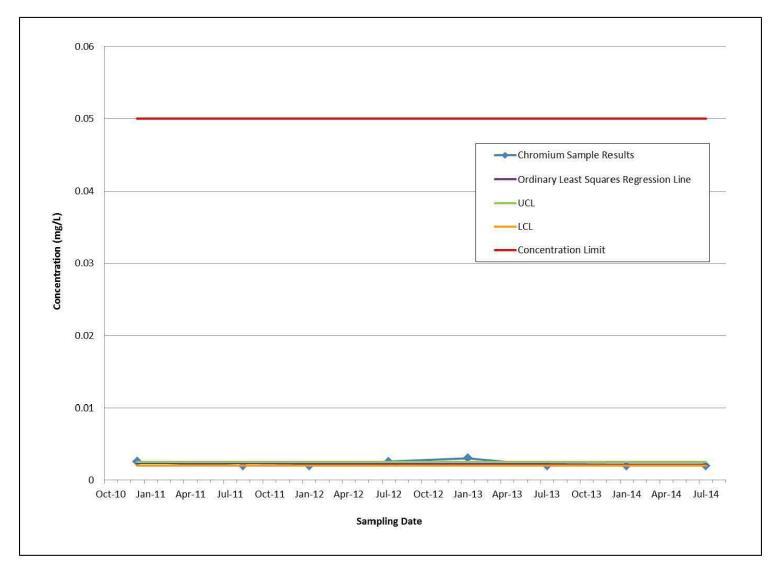


Figure 4-8
Chromium Control Chart for CWL-MW11

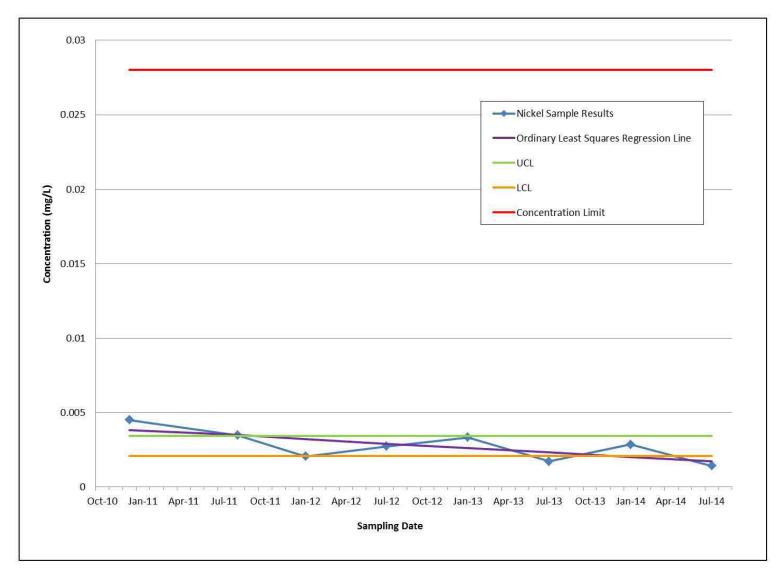


Figure 4-9
Nickel Control Chart for CWL-MW11

The statistical analysis of specific constituents was not performed if all results for the data set are non-detections. The statistical analysis presented for new wells CWL-MW9, CWL-MW10, and CWL-MW11 is significantly impacted by the small data set (each contains eight data points for each constituent), the very low concentrations, and in several cases the large number of non-detect results. Because the evaluation process uses the laboratory MDL in the case of laboratory non-detections, the statistical results are also affected by changes in the MDL over time. In general the laboratory MDLs have decreased over time, which impacts the CWL-BW5/4A statistical evaluation results as the historic data set for this well includes results from 1998 through the present. For laboratory detections that are qualified during the data validation process as "not detected" (i.e., "U" qualified) due to blank contamination, the original result reported by the laboratory is used. Results qualified by the laboratory and/or data validation as estimated (i.e., "J" qualified) are used as reported. Statistical results are presented below for all cases where evaluation was possible. As routine monitoring continues and the data sets increase in size, the evaluation results will improve for detected constituents.

Prediction Intervals

Monitoring Well CWL-BW5/4A

CY 2014 CWL-BW5 chromium and TCE sample results were all non-detections, and the corresponding MDLs were lower than their respective 95% LCLs, thus are below the prediction interval (range of 95% LCL to 95% UCL). This is due to the decrease in the laboratory detection limits over time and the fact that chromium and TCE are often not detected (only 13 chromium detections and 4 TCE detections out of 33 sampling events). Likewise, the CY 2014 results for nickel were slightly less than the 95% LCL, even though they were both low concentration detections. Results for all three hazardous constituents (using the MDL value for constituents not detected) fell within the historical range.

Monitoring Well CWL-MW9

Chromium and TCE have not been detected in any CWL-MW9 samples (CY 2010 through 2014, eight environmental and three duplicate samples). Therefore statistical evaluation of these constituents is not presented. All of the CY 2014 nickel results were detections above the laboratory MDL, were less than the 95% LCL, and were lower than the historical range (i.e., less than the minimum concentration from 2010 through 2013 results).

Monitoring Well CWL-MW10

CY 2014 CWL-MW10 chromium sample results were both non-detects, but the laboratory MDL (0.002 mg/L) fell within the range of the 95% LCL and 95% UCL. The nickel result for the January sample fell within the range of the 95% LCL and 95% UCL, but the July result was less than the 95% LCL. Similar to the nickel results, the January TCE result fell within the range of the 95% LCL and 95% UCL, but the July result was less than the 95% LCL. Results for chromium (using the MDL value), nickel, and TCE fell within the historical range.

Monitoring Well CWL-MW11

CY 2014 CWL-MW11 chromium sample results were both non-detects, but the laboratory MDL (0.002 mg/L) fell within the range of the 95% LCL and 95% UCL. The January nickel result fell within the range of the 95% LCL and 95% UCL, but the July result was below the 95% LCL. TCE has not been detected in any CWL-MW11 samples (CY 2010 through 2014, eight environmental and one duplicate sample). Therefore statistical evaluation of TCE is not presented. The chromium MDL values are equal to the historic minimum concentration. The January result for nickel falls within the historical range, but the July result is less than the historic minimum.

Confidence Intervals

Chromium, nickel, and TCE 95% LCLs and 95% UCLs of the mean are presented for each CWL monitoring well in Table 4-7 and are shown on the associated control charts (Figures 4-1 through 4-9). As previously explained, no statistical evaluation was performed for constituents that have not been detected in groundwater samples from monitoring wells CWL-MW9 (chromium and TCE) and CWL-MW11 (TCE). All calculated 95% LCLs are below the respective concentration limits; therefore there are no exceedances of any concentration limits.

Median Test

The cumulative percentage of sample results greater than the median (i.e., Median Test) for the three hazardous constituents is below 80% for all detected constituents at all four monitoring wells. Therefore, there is no statistically significant evidence of increasing contamination for any of the hazardous constituents. The highest Median Test result was 47% for nickel (CWL-BW5/4A); both CY 2014 results were less than the 95% LCL of the mean. The low median test results for TCE in CWL-BW5/4A (3%) reflects a data set influenced by non-detection results and an analytical laboratory detection limit that has decreased over time.

In addition, the ordinary least squares regression line is shown on Figures 4-1 through 4-9. This line provides a visual representation of the overall trend of the sample results. As shown in Figures 4-1 through 4-9, all three hazardous constituents show a slight decreasing trend, consistent with the Median Test results. Despite the fluctuations shown in Figure 4-7 resulting from higher TCE concentrations in the 2012 and January 2013 samples from CWL-MW10, there is no statistically significant evidence of increasing contamination as indicated by the Median Test. The last three TCE results from CWL-MW10 samples (July 2013, January 2014, and July 2014) have shown consistent decreases. The variation shown in Figure 4-7 is typical of very low concentrations (low parts per billion) that are fluctuating over time.

4.4 Hydrogeologic Assessment

The regional aquifer in the area of the CWL is located within the Santa Fe Group alluvial sediments at a depth of approximately 485 to 500 feet bgs. Regional groundwater beneath Kirtland Air Force Base (KAFB) flows generally westward away from the mountains toward the Rio Grande. Pumping by the City of Albuquerque and KAFB have modified the natural groundwater flow regime and resulted in a steady decline of the upper surface of the regional aquifer. Water levels at the CWL have been declining since monitoring began in 1985. The average rate of decline has been somewhat variable over time, but is typically in the range of 0.4 to 0.8 feet per year. The groundwater elevation decline between October 2013 and October 2014 ranged from 0.38 (CWL-MW11) to 0.85 (CWL-BW5) feet, with an average decline rate of 0.64 feet.

In CY2014, water levels were measured in the groundwater monitoring wells on a quarterly basis, and also during the January and July sampling events. Figure 4-10 depicts the potentiometric surface map of the regional aquifer beneath the CWL based upon the October 2014 water-level measurements. The westward deflection of the potentiometric surface is a localized salient in the potentiometric surface of the regional aquifer. Based on this figure, the local groundwater flow direction varies across the site. However, the overall groundwater flow direction is generally westward in the CWL vicinity, which is consistent with the hydrogeologic conceptual model for the KAFB area (SNL/NM June 2014b). Localized variations in the water table reflect site-specific geologic controls (i.e., vertical and lateral variability in permeability of the saturated Santa Fe Group alluvial sediments). Measured orthogonally from the potentiometric surface contours on Figure 4-10, the horizontal gradient did not change from CY 2013 and is 0.011 feet/feet.

Groundwater velocities were calculated using (a) the current potentiometric surface gradient, (b) the hydraulic conductivity range from the four groundwater monitoring wells (i.e., high and low values from the 2012 slug tests), and (c) a porosity of 29 percent as determined from the laboratory analyses of CWL soil samples (SNL/NM October 1995). The calculated velocities were identical to those reported for CY 2013, and range from approximately 1.8 x 10⁻⁴ to 2.8 x 10⁻³ feet per day (equivalent to 6.3 x 10⁻⁸ to 1.0 x 10⁻⁶ centimeters per second). The average groundwater velocity is 1 x 10⁻³ feet per day (equivalent to 4.1 x 10⁻⁷ centimeters per second). These very low values are consistent with previous estimates for horizontal groundwater flow at the water table in the CWL vicinity.

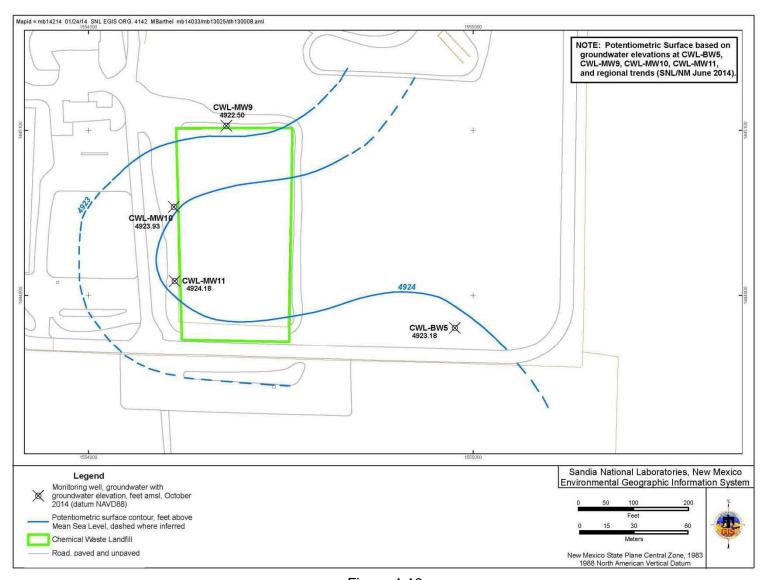


Figure 4-10
Potentiometric Surface of the Regional Aquifer at the Chemical Waste Landfill, October 2014

5.0 SOIL-GAS MONITORING RESULTS

This chapter presents soil-gas monitoring activities (i.e., sampling and analysis), analytical results, and data evaluation for CY 2014 in accordance with PCCP Attachment 1, Sections 1.8 and 1.12, and Attachment 3 (NMED October 2009 and subsequent revisions). The CY 2014 annual soil-gas sampling event was the third performed under the PCCP, which became effective June 2, 2011. Soil-gas sampling field activities are described in Section 5.1, analytical laboratory results and a discussion of data quality are presented in Section 5.2, and data evaluation requirements and results are presented in Section 5.3.

5.1 Soil-Gas Sampling Field Activities

This section describes soil-gas monitoring activities conducted at the CWL in conformance with the CWL Soil-Gas SAP, PCCP Attachment 3 (NMED October 2009 and subsequent revisions) that describes the procedures, methods, and analytical protocols for collecting and analyzing soil-gas samples. The DQO for soil-gas monitoring is to collect accurate and defensible data of high quality to determine the concentrations of hazardous constituents at various depths in the vadose zone at the CWL (i.e., unsaturated soil and sediments above the regional groundwater aquifer). Field forms and documentation that address calibration of equipment, well evacuation, purge volumes, and vacuum pressure readings for each sample container are provided in Annex B of this report and filed in the SNL/NM Records Center.

Soil-gas samples were collected from monitoring wells CWL-UI1, CWL-UI2, CWL-D1, CWL-D2, and CWL-D3 on January 16, 2014. All samples were analyzed using the EPA Method TO-15 (EPA January 1999) for the 50 VOCs listed in PCCP Attachment 1, Table 1-5. CY 2014 soil-gas sampling activities and results are described in the following sections.

5.1.1 Well Evacuation

Purging removes stagnant air from each monitoring well port and sample tubing, allowing the collection of representative soil gas from the soil pore space surrounding the sampling port in the subsurface. Purging continued after meeting the minimum requirement of three tubing volumes until field measurements for VOC levels stabilized, in accordance with PCCP Attachment 3, Section 3.9.2. VOCs were measured by attaching a VOC monitoring instrument to the exhaust port of the vacuum pump.

The CWL soil-gas sampling equipment includes a vacuum pump, a sampling manifold assembly, and a multiport purging chamber. The multiport purging chamber is equipped with individual valves, fittings, and tubing that can be connected to as many as ten individual sample ports. Valves were connected to each sampling port and purging was performed until minimum purge requirements were satisfied. Upon completion of purging, soil-gas samples were collected in SUMMA® canisters per laboratory protocols and sent to the off-site laboratory for analysis.

5.1.2 Field Quality Control

Field QC samples include environmental duplicate samples (minimum of two per annual monitoring event) and field blank samples. Field QC samples were submitted for analysis with the soil-gas samples and analytical results are presented in Section 5.2.2 and Annex B.

Duplicate environmental samples are collected immediately after the original environmental sample in order to reduce variability caused by time and/or sampling mechanics. A total of two duplicate samples were submitted for analysis with CY 2014 environmental samples. These sample results are used to evaluate the reproducibility of the sampling and analytical processes.

Field blank samples are prepared in the field during sampling activities by collecting an ultrapure grade nitrogen gas sample. Results are used to assess whether contamination of the samples may have resulted from ambient field conditions. A total of five field blank samples were submitted for analysis with CY 2014 environmental samples.

5.1.3 Waste Management

Only a small volume of solid waste (personal protective equipment) was generated during the two soil-gas monitoring events. This waste was combined with the groundwater monitoring solid waste and managed as hazardous waste. The waste was submitted to the Hazardous Waste Management Facility for ultimate disposal at a permitted off-site facility.

5.2 Laboratory Results

Soil-gas samples were submitted to Test America, Inc. for chemical analyses by EPA Method TO-15 (EPA January 1999b) in accordance with PCCP Attachment 1, Section 1.8. Analytical reports (i.e., certificates of analyses), analytical methods, MDLs, reporting limits (RLs), dates of analyses, results of field and laboratory QC analyses, and data validation reports are included in Annex B and filed in the SNL/NM Records Center.

5.2.1 Environmental Sample Results

This section summarizes detected VOCs from soil-gas samples collected in January 2014. The January 2014 results are presented in Table 5-1.

In general the 2014 detected VOCs were consistent with the 2013 data set. A total of 33 compounds were detected in the samples collected from the 21 sampling ports. The large number of compounds detected is related to the very low detection limits associated with EPA Method TO-15. The most commonly detected compounds include chloroform (22 detections), 1,1-dichloroethene (1,1-DCE) (22 detections), methylene chloride (22 detections), tetrachlorethene (PCE) (23 detections), 1,1,2-trichloro-1,2,2-trifluoroethane (Freon 113) (23 detections), TCE (23 detections), and trichlorofluoromethane (Freon 11) (23 detections).

Table 5-1
Summary of Detected Volatile Organic Compounds
Chemical Waste Landfill Soil-Gas Monitoring
Analytical Method TO-15^a
Calendar Year 2014

Wall ID/Oamala Bast	Amalida	Result	MDL	RL (males)	Laboratory	Validation
Well ID/Sample Port	Analyte	(ppbv)	(ppbv)	(ppbv)	Qualifierb	Qualifierb
CWL-UI1-40	Acetone	970	57	1600	J	1600U
16-Jan-14	Chloroform	750	31	98		
	1,1-Dichloroethene	180	42	260	J	
	Ethylbenzene	61	21	130	J	130U
	Methylene chloride	47	24	130	J	
	Tetrachloroethene	2800	17	130		
	Toluene	310	17	130		310U
	Trichloroethene	4800	34	130		
	Trichlorofluoromethane	180	64	130		
	1,1,1-Trichloroethane	56	21	98	J	
	1,1,2-Trichloro-1,2,2-trifluoroethane	730	53	130		
	m,p-Xylene	260	33	260		260U
	o-Xylene	110	18	130	J	130U
	Total Organics	9543	NA	NA	NA	NA
CWL-UI1-80	Acetone	980	59	1700	J	1700U
16-Jan-14	Chloroform	580	31	99		
	1,2-Dichloroethane	39	29	260	J	
	1,1-Dichloroethene	320	43	260		
	Ethylbenzene	54	21	130	J	130U
	Methylene chloride	110	24	130	J	
	Tetrachloroethene	950	17	130		
	Toluene	280	17	130		280U
	Trichloroethene	6300	35	130		
	Trichlorofluoromethane	210	65	130		
	1,1,1-Trichloroethane	52	22	99	J	
	1,1,2-Trichloro-1,2,2-trifluoroethane	870	54	130		
	m,p-Xylene	240	33	260	J	260U
	o-Xvlene	83	18	130	J	130U
	Total Organics	9431	NA NA	NA NA	NA	NA

Well ID/Sample Port	Analyte	Result (ppbv)	MDL (ppbv)	RL (ppbv)	Laboratory Qualifier ^b	Validation Qualifier ^b
CWL-UI1-120	Acetone	900	59	1700	J	1700U
16-Jan-14	Chloroform	450	32	100		
	1,2-Dichloroethane	69	29	270	J	
	1,1-Dichloroethene	420	43	270		
	Ethylbenzene	60	21	130	J	130U
	Methylene chloride	240	24	130		
	Styrene	27	20	130	J	
	Tetrachloroethene	670	17	130		
	Toluene	320	17	130		320U
	Trichloroethene	7600	35	130		
	Trichlorofluoromethane	240	65	130		
	1,1,1-Trichloroethane	55	22	100	J	
	1,1,2-Trichloro-1,2,2-trifluoroethane	1000	54	130		
	m,p-Xylene	260	33	270	J	270U
	o-Xylene	84	18	130	J	130U
	Total Organics	10771	NA	NA	NA	NA
CWL-UI1-120 (Duplicate)	Acetone	7.3	4.6	130	J	130U
16-Jan-14	Benzene	6.0	2.0	10	J	
	Carbon tetrachloride	25	1.6	20		
	Chloroform	490	2.4	7.7		
	1,2-Dibromoethane	7.9	1.9	20	J	
	1,2-Dichlorobenzene	12	3.3	10		
	Dichlorodifluoromethane	46	3.7	10		
	1,1-Dichloroethane	18	1.8	7.7		
	1,2-Dichloroethane	38	2.3	20		
	1,1-Dichloroethene	490	3.3	20		
	1,2-Dichloroprppane	84	6.1	10		
	Methylene chloride	230	1.8	10		
	Tetrachloroethene	790	1.3	10		
	Toluene	8.0	1.3	10	J	10U
	Trichloroethene	7600	34	130		
	Trichlorofluoromethane	300	5.0	10		
	1,1,1-Trichloroethane	57	1.7	7.7		
	1,1,2-Trichloroethane	7.0	1.7	10	J	
	1,1,2-Trichloro-1,2,2-trifluoroethane	1000	4.2	10		
	o-Xylene	4.2	1.4	10	J	130U
	Total Organics	11200.9	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result (ppbv)	MDL (ppbv)	RL (ppbv)	Laboratory Qualifier ^b	Validation Qualifier ^b
CWL-UI2-36	Acetone	280	15	430	J	430U
16-Jan-14	Chloroform	510	31	98		
	Ethylbenzene	55	20	130	J	
	Methylene chloride	50	23	130	J	
	Tetrachloroethene	130	17	130		
	Toluene	280	17	130		
	Trichloroethene	2800	34	130		
	Trichlorofluoromethane	130	64	130		
	1,1,1-Trichloroethane	33	21	98	J	
	1,1,2-Trichloro-1,2,2-trifluoroethane	480	53	130		
	m,p-Xylene	250	33	260	J	
	o-Xylene	87	18	130	J	
	Total Organics	4805	NA	NA	NA	NA
CWL-UI2-76	Acetone	300	17	490	J	490U
16-Jan-14	Chloroform	520	29	92		
	1,2-Dichloroethane	33	27	240	J	
	1,1-Dichloroethene	91	39	240	J	
	Ethylbenzene	57	19	120	J	
	Methylene chloride	42	22	120	J	
	Styrene	23	18	120	J	
	Tetrachloroethene	140	16	120		
	Toluene	310	16	120		
	Trichloroethene	3700	32	120		
	Trichlorofluoromethane	150	60	120		
	1,1,1-Trichloroethane	28	20	92	J	
	1,1,2-Trichloro-1,2,2-trifluoroethane	610	50	120		
	m,p-Xylene	250	31	240		
	o-Xylene	82	17	120	J	
	Total Organics	6036	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result (ppbv)	MDL (ppbv)	RL (ppbv)	Laboratory Qualifier ^b	Validation Qualifier ^b
CWL-UI2-136	Acetone	960	58	1600	J	1600U
16-Jan-14	Carbon tetrachloride	25	21	260	J	
	Chloroform	570	31	98		
	1,2-Dichloroethane	44	29	260	J	
	1,1-Dichloroethene	190	42	260	J	
	1,2-Dichloropropane	140	78	130		
	Ethylbenzene	59	20	130	J	
	Methylene chloride	55	23	130	J	
	Tetrachloroethene	190	17	130		
	Toluene	310	17	130		
	Trichloroethene	6200	34	130		
	Trichlorofluoromethane	220	64	130		
	1,1,1-Trichloroethane	35	21	98	J	
	1,1,2-Trichloro-1,2,2-trifluoroethane	930	53	130		
	m,p-Xylene	260	33	260		
	o-Xylene	86	18	130	J	
	Total Organics	9314	NA	NA	NA	NA
CWL-UI2-136 (Duplicate)	Acetone	870	57	1600	J	1600U
16-Jan-14	Carbon tetrachloride	22	21	260	J	
	Chloroform	540	31	97		
	1,2-Dichloroethane	49	28	260	J	
	1,1-Dichloroethene	190	42	260	J	
	1,2-Dichloropropane	140	77	130		
	Ethylbenzene	69	20	130	J	
	Methylene chloride	53	23	130	J	
	Styrene	26	19	130	J	
	Tetrachloroethene	170	16	130		
	Toluene	350	16	130		
	Trichloroethene	5900	34	130		
	Trichlorofluoromethane	220	63	130		
	1,1,1-Trichloroethane	33	21	97	J	
	1,1,2-Trichloro-1,2,2-trifluoroethane	900	52	130		
	m,p-Xylene	290	32	260		
	o-Xylene	98	17	130	J	
	Total Organics	9050	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result (ppbv)	MDL (ppbv)	RL (ppbv)	Laboratory Qualifier ^b	Validation Qualifier ^b
CWL-D1-100	Acetone	870	56	1600	J	1600U
16-Jan-14	Chloroform	540	30	94		
	1,2-Dichloroethane	61	28	250	J	
	1,1-Dichloroethene	440	41	250		
	1,2-Dichloropropane	95	75	130	J	
	Ethylbenzene	64	20	130	J	
	Methylene chloride	48	23	130	J	
	Tetrachloroethene	740	16	130		
	Toluene	340	16	130		
	Trichloroethene	9900	33	130		
	Trichlorofluoromethane	300	62	130		
	1,1,1-Trichloroethane	58	20	94	J	
	1,1,2-Trichloro-1,2,2-trifluoroethane	1300	51	130		
	m,p-Xylene	280	31	250		
	o-Xylene	82	17	130	J	
	Total Organics	14248	NA	NA	NA	NA
CWL-D1-160	Acetone	750	84	2400	J	2400U
16-Jan-14	Chloroform	490	45	140		
	1,2-Dichloroethane	73	41	380	J	
	1,1-Dichloroethene	770	61	380		
	1,2-Dichloropropane	160	110	190	J	
	Ethylbenzene	67	30	190	J	
	Methylene chloride	67	34	190	J	
	Tetrachloroethene	560	24	190		
	Toluene	330	24	190		
	Trichloroethene	16000	49	190		
	Trichlorofluoromethane	470	92	190		
	1,1,1-Trichloroethane	71	31	140	J	
	1,1,2-Trichloro-1,2,2-trifluoroethane	2000	77	190		
	m,p-Xylene	300	47	380	J	
	o-Xylene	92	25	190	J	
	Total Organics	21450	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result (ppbv)	MDL (ppbv)	RL (ppbv)	Laboratory Qualifier ^b	Validation Qualifier ^b
CWL-D1-240	Acetone	870	79	2200	J	2200U
16-Jan-14	Carbon tetrachloride	65	28	350	J	
	Chloroform	450	42	130		
	Dichlorodifluoromethane	72	64	180	J	
	1,1-Dichloroethane	33	32	130	J	
	1,2-Dichloroethane	72	39	350	J	
	1,1-Dichloroethene	970	57	350		
	1,2-Dichloropropane	180	110	180		
	Ethylbenzene	72	28	180	J	
	Methylene chloride	56	32	180	J	
	Tetrachloroethene	470	23	180		
	Toluene	380	23	180		
	Trichloroethene	19000	47	180		
	Trichlorofluoromethane	530	87	180		
	1,1,1-Trichloroethane	66	29	130	J	
	1,1,2-Trichloro-1,2,2-trifluoroethane	2500	72	180		
	m,p-Xylene	310	44	350	J	
	o-Xylene	90	24	180	J	
	Total Organics	25316	NA	NA	NA	NA
CWL-D1-350	Acetone	1200	39	1100		1200U
16-Jan-14	1,1-Dichloroethene	510	57	350		
	Ethylbenzene	61	28	180	J	
	Methylene chloride	61	32	180	J	
	Tetrachloroethene	220	23	180		
	Toluene	310	23	180		
	Trichloroethene	8500	46	180		
	Trichlorofluoromethane	300	87	180		
	1,1,2-Trichloro-1,2,2-trifluoroethane	1300	72	180		-
	m,p-Xylene	270	44	350	J	-
	o-Xylene	81	24	180	J	-
	Total Organics	11613	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result (ppbv)	MDL (ppbv)	RL (ppbv)	Laboratory Qualifier ^b	Validation Qualifier ^b
CWL-D1-470	Acetone	5.4	0.79	22	J	22U
16-Jan-14	Carbon tetrachloride	1.5	0.86	11	J	
	Chloroform	1.5	1.3	4.0	J	
	Dichlorodifluoromethane	8.7	1.9	5.4		
	1,1-Dichloroethene	22	1.7	11		
	Methylene chloride	4.4	0.96	5.4	J	
	Tetrachloroethene	5.0	0.68	5.4	J	
	Trichloroethene	160	1.4	5.4		
	Trichlorofluoromethane	39	2.6	5.4		
	1,1,2-Trichloro-1,2,2-trifluoroethane	150	2.2	5.4		
	Total Organics	392.1	NA	NA	NA	NA
CWL-D2-120	Acetone	400	58	1600	J	
16-Jan-14	2-Butanone	65	64	260	J	
	Chloroform	650	31	97		
	Dichlorodifluoromethane	49	47	130	J	
	1,2-Dichloroethane	95	29	260	J	
	1,1-Dichloroethene	560	42	260		
	1,2-Dichloropropane	210	78	130		
	Ethylbenzene	74	20	130	J	
	Methylene chloride	57	23	130	J	
	Tetrachloroethene	530	17	130		
	Toluene	350	17	130		
	Trichloroethene	13000	34	130		
	Trichlorofluoromethane	380	64	130		
	1,1,1-Trichloroethane	65	21	97	J	
	1,1,2-Trichloro-1,2,2-trifluoroethane	1600	53	130		
	m,p-Xylene	310	32	260		
	o-Xylene	96	17	130	J	
	Total Organics	18491	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result (ppbv)	MDL (ppbv)	RL (ppbv)	Laboratory Qualifier ^b	Validation Qualifier ^b
CWL-D2-240	Acetone	370	49	1400	J	
16-Jan-14	Carbon tetrachloride	53	21	260	J	
	Chloroform	630	31	98		
	Dichlorodifluoromethane	64	48	130	J	
	1,1-Dichloroethane	32	24	98	J	
	1,2-Dichloroethane	80	29	260	J	
	1,1-Dichloroethene	760	42	260		
	1,2-Dichloropropane	290	79	130		
	Ethylbenzene	61	21	130	J	
	Methylene chloride	78	24	130	J	
	Tetrachloroethene	510	17	130		
	Toluene	290	17	130		
	Trichloroethene	16000	34	130		
	Trichlorofluoromethane	470	64	130		
	1,1,1-Trichloroethane	63	21	98	J	
	1,1,2-Trichloro-1,2,2-trifluoroethane	2000	53	130		
	m,p-Xylene	270	33	260		
	o-Xylene	93	18	130	J	
	Total Organics	22114	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result (ppbv)	MDL (ppbv)	RL (ppbv)	Laboratory Qualifier ^b	Validation Qualifier ^b
CWL-D2-350	Acetone	1300	57	1600	J	
16-Jan-14	2-Butanone	100	64	260	J	
	Chloroform	360	30	96		
	Dichlorodifluoromethane	50	46	130	J	-
	1,2-Dichloroethane	75	28	260	J	
	1,1-Dichloroethene	540	41	260		
	1,2-Dichloropropane	130	77	130		
	Ethylbenzene	100	20	130	J	
	4-Methyl-2-pentanone	49	43	130	J	
	Methylene chloride	90	23	130	J	
	Styrene	46	19	130	J	
	Tetrachloroethene	340	16	130		
	Toluene	490	16	130		
	Trichloroethene	9900	34	130		
	Trichlorofluoromethane	350	63	130		
	1,1,1-Trichloroethane	43	21	96	J	
	1,1,2-Trichloro-1,2,2-trifluoroethane	1500	52	130		
	m,p-Xylene	440	32	260		
	o-Xylene	140	17	130		
	Total Organics	16043	NA	NA	NA	NA
CWL-D2-440	Acetone	36	1.1	31		
16-Jan-14	2-Butanone	5.0	1.2	5.0		
	Carbon tetrachloride	0.44	0.40	5.0	J	
	Chloroform	4.5	0.59	1.9		
	Dichlorodifluoromethane	0.98	0.91	2.5	J	
	1,1-Dichloroethene	7.5	0.81	5.0		
	Tetrachloroethene	4.7	0.32	2.5		
	Trichloroethene	140	0.66	2.5		
	Trichlorofluoromethane	4.5	1.2	2.5		
	1,1,2-Trichloro-1,2,2-trifluoroethane	13	1.0	2.5		
	Total Organics	216.6	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result (ppbv)	MDL (ppbv)	RL (ppbv)	Laboratory Qualifier ^b	Validation Qualifier ^b
CWL-D2-470	Acetone	1600	23	650		
16-Jan-14	Benzene	19	10	52	J	
	Benzyl chloride	22	21	100	J	
	2-Butanone	140	26	100		
	Chloroform	330	12	39		
	1,2-Dichlorobenzene	24	17	52	J	
	1,3-Dichlorobenzene	21	14	52	J	
	1,4-Dichlorobenzene	23	19	52	J	
	Dichlorodifluoromethane	23	19	52	J	
	1,1-Dichloroethane	12	9.4	39	J	
	1,2-Dichloroethane	82	11	100	J	
	1,1-Dichloroethene	200	17	100		
	1,2-Dichloropropane	80	31	52		
	Ethylbenzene	120	8.2	52		
	4-Ethyltoluene	32	24	52	J	
	2-Hexanone	38	11	52	J	
	4-Methyl-2-pentanone	41	18	52	J	
	Methylene chloride	48	9.4	52	J	
	Styrene	55	7.7	52		
	Tetrachloroethene	260	6.6	52		
	Toluene	620	6.6	52		
	Trichloroethene	4700	14	52		
	Trichlorofluoromethane	160	25	52		
	1,2,4-Trichlorobenzene	89	56	260	J	
	1,1,1-Trichloroethane	40	8.5	39		
	1,1,2-Trichloro-1,2,2-trifluoroethane	600	21	52		
	1,2,4-Trimethylbenzene	44	21	100	J	
	1,3,5-Trimethylbenzene	23	16	52	J	
	m,p-Xylene	530	13	100		
	o-Xylene	160	7.0	52		
	Total Organics	10136	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result (ppbv)	MDL (ppbv)	RL (ppbv)	Laboratory Qualifier ^b	Validation Qualifier ^b
CWL-D3-120	Acetone	1400	29	820		1400U
16-Jan-14	Benzene	15	13	66	J	
	2-Butanone	110	33	130	J	
	Chloroform	160	16	49		
	1,2-Dichloroethane	70	14	130	J	
	1,1-Dichloroethene	200	21	130		
	1,2-Dichloropropane	90	39	66		
	Ethylbenzene	90	10	66		
	Methylene chloride	54	12	66	J	
	Styrene	45	9.7	66	J	
	Tetrachloroethene	99	8.4	66		
	Toluene	460	8.4	66		
	Trichloroethene	4100	17	66		
	Trichlorofluoromethane	160	32	66		
	1,1,1-Trichloroethane	16	11	49	J	
	1,1,2-Trichloro-1,2,2-trifluoroethane	630	27	66		
	1,2,4-Trimethylbenzene	30	27	130	J	
	m,p-Xylene	440	16	130		
	o-Xylene	150	8.9	66		
	Total Organics	6919	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result (ppbv)	MDL (ppbv)	RL (ppbv)	Laboratory Qualifier ^b	Validation Qualifier ^b
CWL-D3-170	Acetone	1400	29	810		1400U
16-Jan-14	Benzene	19	13	64	J	
	2-Butanone	120	32	130	J	
	Chloroform	160	15	48		
	Dichlorodifluoromethane	28	23	64	J	64U
	1,2-Dichloroethane	94	14	130	J	
	1,1-Dichloroethene	260	21	130		
	1,2-Dichloropropane	120	39	64		
	Ethylbenzene	120	10	64		
	4-Methyl-2-pentanone	35	22	64	J	
	Methylene chloride	51	12	64	J	
	Tetrachloroethene	110	8.2	64		
	Toluene	640	8.2	64		
	Trichloroethene	5400	17	64		
	Trichlorofluoromethane	200	32	64		
	1,1,1-Trichloroethane	17	10	48	J	
	1,1,2-Trichloro-1,2,2-trifluoroethane	800	26	64		
	m,p-Xylene	530	16	130		
	o-Xylene	150	8.7	64		
	Total Organics	8826	NA	NA	NA	NA
CWL-D3-350	Acetone	1100	58	1600	J	1600U
16-Jan-14	2-Butanone	85	64	260	J	
	Chloroform	140	31	97		
	1,2-Dichloroethane	52	29	260	J	
	1,1-Dichloroethene	270	42	260		
	1,2-Dichloropropane	99	78	130	J	
	Ethylbenzene	89	20	130	J	
	Methylene chloride	340	23	130		
	Styrene	61	19	130	J	
	Tetrachloroethene	97	17	130	J	
	Toluene	1100	17	130		
	Trichloroethene	5300	34	130		
	Trichlorofluoromethane	210	64	130		
	1,1,2-Trichloro-1,2,2-trifluoroethane	840	53	130		
	m,p-Xylene	340	32	260		
	o-Xylene	98	17	130	J	
	Total Organics	9121	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result (ppbv)	MDL (ppbv)	RL (ppbv)	Laboratory Qualifier ^b	Validation Qualifier ^b
CWL-D3-440	Acetone	1400	58	1600	J	1600U
16-Jan-14	2-Butanone	100	65	260	J	
	Carbon tetrachloride	30	21	260	J	
	Chloroform	230	31	98		
	1,2-Dichloroethane	97	29	260	J	
	1,1-Dichloroethene	400	42	260		
	1,2-Dichloropropane	190	79	130		
	Ethylbenzene	97	21	130	J	
	Methylene chloride	330	24	330		
	Tetrachloroethene	150	17	130		
	Toluene	570	17	130		
	Trichloroethene	8200	34	130		
	Trichlorofluoromethane	310	64	130		
	1,1,2-Trichloro-1,2,2-trifluoroethane	1300	53	130		
	m,p-Xylene	460	33	260		
	o-Xylene	140	18	130		
	Total Organics	12604	NA	NA	NA	NA
CWL-D3-480	Acetone	7.4	0.18	5.0		7.4U
16-Jan-14	Benzene	0.15	0.079	0.40	J	
	2-Butanone	1.6	0.20	0.80		
	Carbon tetrachloride	0.18	0.064	0.80	J	
	Chloroform	1.4	0.095	0.30		
	Dichlorodifluoromethane	0.57	0.15	0.40		0.57U
	1,2-Dichloroethane	0.13	0.088	0.80	J	
	1,1-Dichloroethene	1.5	0.13	0.80		
	1,2-Dichloropropane	0.68	0.24	0.40		
	2-Hexanone	0.20	0.087	0.40	J	
	Methylene chloride	1.3	0.072	0.40		
	Tetrachloroethene	0.90	0.051	0.40		
	Toluene	0.18	0.051	0.40	J	
	Trichloroethene	35	0.11	0.40		
	Trichlorofluoromethane	1.3	0.20	0.40		
	1,1,1-Trichloroethane	0.12	0.065	0.30	J	
	1,1,2-Trichloro-1,2,2-trifluoroethane	4.2	0.16	0.40		
	Total Organics	48.84	NA	NA	NA	NA

Notes

^aAnalytical Method EPA 1999, "Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, Compendium Method TO-15" Center for Environmental Research Information, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.

^bLaboratory/Validation Qualifier - Blank (--) cell = all quality control samples met acceptance criteria. "J" and "U," see below.

^cTotal Organics -- sum of validated detected organic compounds.

^dDetected value >500 ppbv threshold concentration that applies only to deepest well ports at CWL-D1, CWL-D2, and CWL-D3. Statistical evaluation presented in Section 5.3.

EPA = U.S. Environmental Protection Agency.

J = Estimated value. Analyte detected at a level below the practical quantitation limit or reporting limit (RL) and greater than or equal to the MDL.

MDL = Method detection limit. The minimum concentration that can be measured and reported with 99% confidence that the analyte is present (i.e., greater than zero).

NA = Not applicable.

ppbv = parts per billion by volume basis.

RL = Reporting limit. Minimum concentration that can be reported with a statistically established degree of confidence.

U = Analyte not present or concentration is below the method detection limit.

Other commonly detected VOCs included 1,2-dichloropropane (15 detections), ethyl benzene (16 detections), 1,2-dichloroethane (18 detections), 1,1,1-trichloroethane (18 detections), toluene (17 detections), m, p-xylene (16 detections), and o-xylene (16 detections). Acetone was detected 23 times, but 18 of these detections were qualified as non-detections based on data validation review (i.e., field blank contamination, see section 5.2.2).

Similar to the 2013 results, TCE was the most frequently detected VOC and had the highest VOC concentrations. TCE was detected in all January samples at concentrations ranging from 0.035 parts per million by volume (ppmv) at CWL-D3 (480 foot bgs sample port) to 19 ppmv at CWL-D1 (240 foot bgs sample port). In addition, 1,1,2-trichloro-1,2,2-trifluoroethane; trichlorofluoromethane; and PCE were detected in all samples at lower concentrations. Chloroform and 1,1-dichloroethene were detected in all samples except for CWL-D1-350 and CWL-UI1-36, respectively.

The maximum soil-gas concentration from the three deepest sampling ports (CWL-D1-470, CWL-D2-470, CWL-D3-480) was TCE at a concentration of 4.7 ppmv (CWL-D2-470). Only five VOCs exceeded 0.5 ppmv at the three deepest sampling ports and all of these detections were from CWL-D2-470. The five VOCs included acetone (1.6 ppmv), toluene (0.62 ppmv), trichloroethene (4.7 ppmv), 1,1,2-trichloro-1,2,2-trifluoroethane (0.6 ppmv), and m,p-xylene (0.53 ppmv).

5.2.2 Field Quality Control Sample Results

Table 5-2 presents field duplicate results for samples collected from wells CWL-UI1-120 and CWL-UI2-136 in January. RPD calculations were performed for all detected compounds with concentrations exceeding five times the analytical laboratory reporting limit in both the environmental and duplicate sample. If a detected compound in one sample was not detected in the corresponding duplicate or environmental sample, no RPD was calculated. The duplicate sample results show good agreement in both sample sets, with all RPDs less than 50%.

In the five field blank samples, acetone was detected four times and the following VOCs were detected one time each: 2-butanone, dichlorodifluoromethane, ethylbenzene, toluene, TCE, m,p-Xylene, and o-Xylene. All detections in the field blank samples were very low concentrations; reported values were less than 1 ppbv except for three acetone detections (1.9, 1.1, and 1.1 ppbv). If a corresponding VOC was detected in associated environmental sample at concentrations less than five times the blank concentration (less than ten times for common laboratory contaminants), then detected values were qualified as not detected during data validation. A total of 34 results were qualified as non-detects during data validation due to field blank sample results; (18) acetone results, (2) dichlorodifluoromethane results, (3) ethyl benzene results, (4) toluene results, (3) m, p-xylene results, and (4) o-xylene results (Table 5-1). Both acetone and toluene are considered common laboratory contaminants. No TCE sample results were qualified because all TCE detections were greater than five times the related field blank concentration.

Table 5-2 Summary of January 2014 Duplicate Samples Chemical Waste Landfill Soil-Gas Monitoring Calendar Year 2014

	Environmental Sample (R1)	Duplicate Sample (R2)	RPD ^a			
Well ID/Parameter	(ppbv)		(%)			
CWL-UI1-120						
1,1,2-Trichloro-1,2,2-trifluoroethane	1000	1000	< 1			
Trichloroethene	7600	7600	< 1			
Tetrachloroethene	670	790	16			
CWL-UI2-136						
Chloroform	570	540	5			
Trichloroethene	6200	5900	5			
1,1,2-Trichloro-1,2,2-trifluoroethane	930	900	3			

Notes:

 a RPD = Relative percent difference is calculated with the following equation and rounded to nearest whole number. Bolded values exceed acceptance criterion of less than 50%.

$$RPD = \frac{|R_I - R_2|}{[(R_I + R_2)/2]} \times 100$$

where: R_1 = Environmental sample result. R_2 = Duplicate sample result.

vdqq = Parts per billion by volume basis.

5.2.3 Data Quality

Field QC sample results met the sampling DQOs and validated the adequacy of the field sampling procedures and protocol. RPD results for the two environmental-duplicate sample pairs met the RPD criterion of less than 50%. Internal laboratory QC samples, including laboratory control samples, replicates, matrix spikes, matrix spike duplicates, and surrogate spike samples, were analyzed concurrently with CWL soil-gas samples. The data were reviewed and qualified in accordance with AOP 00-03, "Data Validation Procedure for Chemical and Radiochemical Data" (SNL/NM June 2014a).

No significant data quality issues were noted for January 2014 data sets. All data were determined to be acceptable and reported quality control measures were in compliance with analytical method and laboratory procedure requirements (i.e., technically defensible). Data Validation Reports and Contract Verification Review forms are provided in Annex B of this report and are filed in the SNL/NM Records Center.

5.2.4 Variances and Non-Conformances

There were no variances or non-conformances associated with the CY 2014 soil-gas activities.

5.3 Data Evaluation

Soil-gas monitoring is required to determine whether the groundwater beneath the CWL is adequately protected as part of the CWL groundwater monitoring program. In accordance with PCCP Attachment 1, Section 1.8.2.2, statistical evaluation of soil-gas results for specific VOCs that exceed 0.50 ppmv from the three deepest sampling ports of wells CWL-D1 through CWL-D3 (i.e., CWL-D1-470, CWL-D2-470, and CWL-D3-480) are required annually, and include the following:

- calculate the UCL and LCL of the mean at a 95% confidence level using current data and historic data since completion of the VE VCM, and
- compare the LCL to the trigger level of 20 ppmv.

The trigger level of 20 ppmv only applies to the 95% LCL of the mean and not to individual sample results. For the first 5 years after the effective date of the PCCP (June 2, 2011), historical soil-gas monitoring results are to be used to augment the statistical analysis. After June 2, 2016, only soil-gas data collected under the PCCP is to be used. Historical soil-gas data used and presented in Section 5.4 includes results from June 1998, June 1999, August 2001, June 2004, September 2004, and October 2005. Although the VE VCM was not completed until July 1998, the June 1998 data set is included as it is representative of the conditions when the VE system was shut down a month later.

5.3.1 Statistical Assessment Requirements

Based upon the soil-gas monitoring results presented in Table 5-1 and discussed in Section 5.2.1, acetone (1.6 ppmv), toluene (0.62 ppmv), 1,1,2-trichloro-1,2,2-trifluoroethane (0.60 ppmv), TCE (4.70 ppmv), and m,p-xylene (0.53 ppmv) in the CWL-D2-470 sample exceeded the 0.5 ppmv threshold. As a result, confidence intervals (UCLs and LCLs) are calculated and used to compare to the trigger level of 20 ppmv. If a result is below the analytical laboratory detection limit, the MDL for the constituent is used for statistical analysis. For duplicate analyses, only the highest detection is used for statistical analysis.

5.3.2 Statistical Assessment Results

CY 2014 soil-gas statistical assessment results are presented in Table 5-3. The LCLs for acetone, toluene, and m,p-xylene could not be calculated due to the combination of the low total number of sample results and the high standard deviation (i.e., high variability) of the data set. There are only ten results for these VOCs and the variability in the reported soil-gas concentrations appears to be representative of the residual soil-gas plume that is changing over time.

The calculated LCLs for 1,1,2-trichloro-1,2,2-trifluoroethane and TCE are below the trigger level of 20 ppmv. For the four VOCs where an LCL could not be calculated, the corresponding LCLs would be below the 20 ppmv trigger level if they could be calculated, as their corresponding UCLs are an order of magnitude or more below the trigger level.

Table 5-3
Chemical Waste Landfill Soil-Gas Monitoring
Statistical Assessment Results Summary
Calendar Year 2014

Soil-Gas Constituent Exceeding Threshold Concentration ^a	Minimum ^b (ppmv)	Maximum ^b (ppmv)	Mean ^c (ppmv)	Standard Deviation ^c	LCL ^c (ppmv)	UCL ^c (ppmv)	Distribution Type ^c	Trigger Level ^a (ppmv)	Trigger Level Exceeded ^d ?
Acetone (1.6 ppmv)	0.001	5	0.8173	1.584	NA	1.736	Normal	20	No
Toluene (0.062 ppmv)	0.001	0.62	0.1141	0.2193	NA	0.2412	Normal	20	No
Trichloroethene (4.7 ppmv)	0.001	7.1	4.164	2.326	2.816	5.512	Normal	20	No
1,1,2-Trichloro-1,2,2- Trifluoroethane (0.6 ppmv)	0.001	1.2	0.6671	0.3675	0.4541	0.8801	Normal	20	No
m,p-Xylene (0.53 ppmv)	0.001	0.53	0.09195	0.1739	NA	0.1928	Normal	20	No

Notes:

LCL = Lower confidence limit.

NA = Not applicable; LCL invalid due to low number of samples and high standard deviation of the data set.

ppmv = Parts per million by volume basis.

UCL = Upper confidence limit.

^aAll maximum concentrations are from CWL-D2-470 January environmental sample. CWL Permit Attachment 1, Section 1.8.2.2, defines the threshold concentration (0.50 ppmv) and trigger level (20 ppmv). Both concentration limits apply only to soil-gas constituents detected in the three deepest sampling ports of wells CWL-D1 through CWL-D3.

^bMinimum and maximum results determined from historical data, including the CY 2014 results.

^cMean, standard deviation, LCL, UCL, and Distribution Type determined using ProUCL statistical program.

^dExceedance determined by comparing the constituent LCL against the trigger level of 20 ppmv.

5.4 Historic Data Evaluation

In accordance with PCCP Attachment 1, Section 1.12 and Attachment 3, Section 3.11, current soil-gas monitoring results are compared and evaluated with respect to historic results since completion of the VE VCM. This allows for long-term trends to be defined and provides for more meaningful interpretations of current results with respect to historic data. Tables 5-4 and 5-5 present TCE and total VOCs soil-gas monitoring results, respectively, for the post-closure care monitoring network. Data sets included range from June 1998 (representative of the end of the VE VCM) to January 2014. To be consistent with historic soil-gas monitoring data sets and for a more technically sound historic comparison, the concentrations shown in Tables 5-4 and 5-5 for the 2012 and 2013 data sets are taken from the January sampling events that included results for all monitoring wells and sampling ports. The much more limited data set associated with resampling one port at two monitoring wells in May 2012 and March 2013 were not incorporated into Tables 5-4 and 5-5.

Consistent with pre-VE VCM characterization data, the highest concentrations of TCE in soil gas remain in the central part of the vadose zone, approximately 240 feet bgs (CWL-D1 and CWL-D2 results for the 240 foot bgs depth, 19.0 and 16.0 ppmv, respectively). Consistent with the detailed conceptual site model presented in Annex E of the CWL Corrective Measures Study Report (SNL/NM December 2004), concentrations in this central portion of the plume are generally decreasing over time as VOC soil gas slowly diffuses in three dimensions (i.e., away from this central "core" of the VOC soil-gas plume). As this slow diffusion occurs, concentrations at other depths will sometimes increase. When the October 2005 results are compared to the January 2014 results for the CWL-D1 through CWL-D3 sampling ports (5 sampling ports each, for a total of 15 ports from 100 to 480 feet bgs), nine sampling ports show decreasing levels, whereas six ports show increasing levels. Two of the three deep sampling ports (CWL-D1-470 and CWL-D2-470) had lower concentrations in January 2014 relative to October 2005. These trends are similar for the total VOC results. When January 2014 TCE results are compared to January 2013 results, all ports show decreasing or consistent concentrations except for three (CWL-D1-470, CWL-D2-440, and CWL-D3-480). For total VOC results, seven ports show increases in concentration, while 14 ports show decreases in concentrations.

Figures 5-1 through 5-5 show the concentration of TCE over time for each sampling port of CWL-UI1, CWL-UI2, CWL-D1, CWL-D2, and CWL-D3, respectively. Figures 5-6 through 5-10 show the concentration of total VOCs over time for each sampling port of CWL-UI1, CWL-UI2, CWL-D1, CWL-D2, and CWL-D3, respectively. The figures are graphical representations of the data presented in Tables 5-4 and 5-5. The total VOC plots for CWL-UI1 and CWL-UI2 (Figures 5-6 and 5-7) look very different than the corresponding TCE plots (Figures 5-1 and 5-2). This is because for these locations and the shallower depths represented (36 to 136 feet bgs), acetone used to occur at very high concentrations, especially at the shallowest two ports (36 and 40 feet bgs) (SNL/NM December 2004). Concentrations of total VOCs have decreased dramatically over time at these depths, most likely due to upward diffusion to the surface. Concentrations of TCE in the shallower soil-gas wells have remained relatively stable, and approximately half of the ports show small increases, as reflected in Table 5-4 and Figures 5-1 and 5-2 (compare the October 2005 results to the January 2012-2014 results). These small increases at CWL-UI1 and CWL-UI2 shallow sampling ports are consistent with upward diffusion of TCE soil gas from the former plume "core" located approximately 250 feet bgs.

Table 5-4 Historic Soil-Gas Monitoring Summary – TCE Concentrations^a (ppmv) Chemical Waste Landfill

Well ID & Sample Port Depth ^b	June 1998	June 1999	August 2001	June 2004	September 2004	October 2005	January ^c 2012	January ^c 2013	January 2014
CWL-UI1-40	4.5	16.0	7.9	3.8	4.0	4.5	5.20	7.30	4.80
CWL-UI1-80	0.19	4.9	6.7	5.9	6.1	6.8	6.50	9.70	6.30
CWL-UI1-120	3.0	5.9	9.1	6.0	14.0	13.0	7.70	11.00	7.60
CWL-UI2-36	0.037	0.70	ND	1.6	ND	1.2	3.10	3.50	2.80
CWL-UI2-76	0.091	1.0	2.4	3.4	4.1	3.7	5.60	7.80	3.70
CWL-UI2-136	5.5	1.9	4.6	3.0	1.9	3.0	8.50	6.60	6.20
CWL-D1-100	0.220	2.5	7.1	9.8	13.0	12.0	10.00	12.00	9.90
CWL-D1-160	120.0	14.0	21.0	25.0	29.0	22.0	14.00	16.00	16.00
CWL-D1-240	160.0	44.0	44.0	34.0	34.0	24.0	22.00	23.00	19.00
CWL-D1-350	0.013	11.0	19.0	13.0	22.0	2.8	13.00	13.00	8.50
CWL-D1-470	0.077	0.17	0.25	0.25	0.27	0.34	0.51	0.08	0.16
CWL-D2-120	3.1	21.0	20.0	22.0	25.0	16.0	16.00	19.00	13.00
CWL-D2-240	ND	40.0	38.0	26.0	13.0	17.0	18.00	23.00	16.00
CWL-D2-350	0.064	12.0	18.0	11.0	17.0	5.0	11.00	13.00	9.90
CWL-D2-440	0.082	1.0	7.6	2.5	5.9	2.8	1.80	0.11	0.14
CWL-D2-470	ND	0.94	5.8	3.1	4.6	4.3	4.10	7.00	4.70
CWL-D3-120	0.009	1.1	4.0	6.0	4.9	4.5	7.00	5.30	4.10
CWL-D3-170	ND	2.5	9.9	4.5	6.6	4.4	7.90	7.20	5.40
CWL-D3-350	ND	1.6	2.4	2.2	1.5	1.4	8.80	7.80	5.30
CWL-D3-440	ND	1.8	0.26	0.75	3.4	3.3	6.80	13.00	8.20
CWL-D3-480	ND	1.9	1.2	0.2	2.1	4.1	0.21	0.03	0.04

Notes:

ND = Not detected.

ppmv = Parts per million by volume.

TCE = Trichloroethene.

January 2012 – 2014 concentrations have been rounded for significant digit consistency; they may not exactly match the reported concentrations corresponding data tables.

^aJune 1998 through January 2012 are EPA Method TO-14 results. January 2013 and 2014 are EPA Method TO-15 results. If a duplicate sample was collected, the maximum concentration of the environmental-duplicate sample pair is shown,

^bPort depth is the last number in the Well Identification (ID), and is in feet below ground surface.

^cResults associated with duplicate resampling conducted in May (2012 data set) and March (2013 data set) are not included. CWL-D3-440 results for January 2012 collected in March 2012 due to issues with sampling this port; could not be sampled in January 2012.

Table 5-5
Historic Soil-Gas Monitoring Summary – Total Volatile Organic Compound Concentrations^a (ppmv)
Chemical Waste Landfill

Well ID & Sample Port Depth ^b	June 1998	June 1999	August 2001	June 2004	September 2004	October 2005	January ^c 2012	January ^c 2013	January 2014
CWL-UI1-40	112	246	141	11.78	11.47	13.15	11.76	14.68	9.54
CWL-UI1-80	0.22	9.63	13	10.61	10.67	11.61	10.18	13.74	9.43
CWL-UI1-120	6.32	9.94	45.42	9.36	21.41	19.18	11.07	14.64	11.20
CWL-UI2-36	17.6	2117	1800	813.7	850.0	391.78	4.64	5.02	4.81
CWL-UI2-76	0.126	1.65	4.37	5.52	6.90	5.96	7.85	10.74	6.04
CWL-UI2-136	10.5	4.21	7.98	4.42	2.85	4.89	11.45	9.12	9.31
CWL-D1-100	0.248	4.93	11.9	14.59	18.22	17.25	13.84	15.90	14.25
CWL-D1-160	167	21.4	30.1	33.32	38.41	29.28	18.48	20.33	21.45
CWL-D1-240	261	78.4	61.5	45.27	44.74	32.60	22.46	28.71	25.32
CWL-D1-350	0.02	20.7	31.7	18.73	30.53	4.07	16.56	16.31	11.61
CWL-D1-470	0.105	0.231	0.921	0.612	0.82	0.603	0.87	0.13	0.39
CWL-D2-120	5.4	33.0	29.4	29.26	34.23	22.31	20.70	24.05	18.49
CWL-D2-240	0.047	101	52.9	34.72	17.62	22.83	22.90	28.38	22.11
CWL-D2-350	0.091	22.9	25.9	15.42	23.41	7.50	13.31	16.01	16.04
CWL-D2-440	0.453	4.38	11.8	3.85	9.29	4.17	2.60	0.15	0.22
CWL-D2-470	0.058	6.95	8.40	4.17	6.60	6.40	5.78	8.49	10.14
CWL-D3-120	0.009	2.17	6.20	8.39	7.10	6.23	9.19	6.80	6.92
CWL-D3-170	0.037	5.01	15.0	6.11	9.40	6.12	10.57	9.18	8.83
CWL-D3-350	0.106	2.76	3.98	3.39	2.34	2.27	12.90	10.44	9.12
CWL-D3-440	0.017	4.04	0.519	0.96	5.14	4.64	9.69	17.73	12.60
CWL-D3-480	0.001	4.47	1.85	0.31	3.30	5.71	0.30	0.06	0.05

Notes:

ppmv = Parts per million by volume.

VOC = Volatile organic compound.

January 2012 - 2014 concentrations have been rounded for significant digit consistency; they may not exactly match the reported concentrations corresponding data tables.

^aThe total VOC concentration is the sum of all detected constituents. June 1998 through January 2012 are EPA Method TO-14 results. January 2013 and 2014 are EPA Method TO-15 results. If a duplicate sample was collected, the maximum concentration of the environmental-duplicate sample pair is shown,

^bPort depth is the last number in the Well Identification (ID), and is in feet below ground surface.

^cResults associated with duplicate resampling conducted in May (2012 data set) and March (2013 data set) are not included. CWL-D3-440 results for January 2012 collected in March 2012 due to issues with sampling this port; could not be sampled in January 2012.

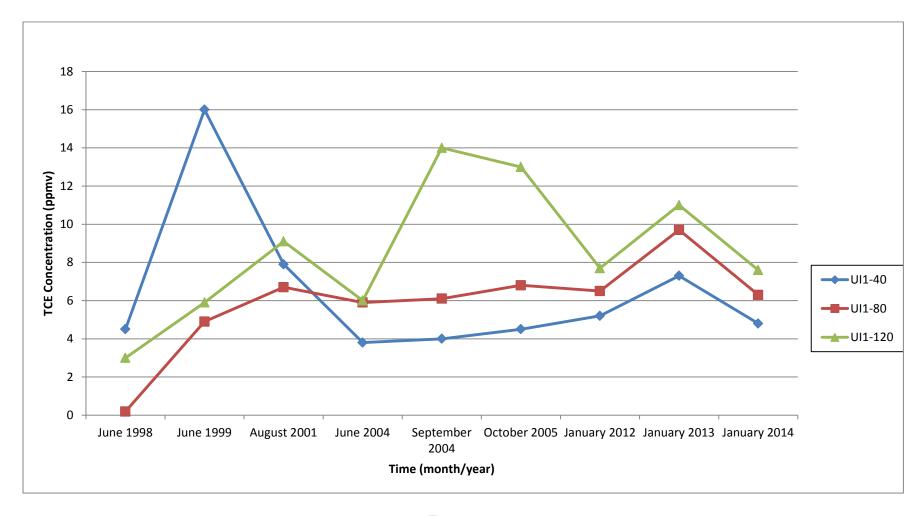


Figure 5-1
Historic Total TCE Compound Concentrations vs. Time
Chemical Waste Landfill Well UI-1 Ports

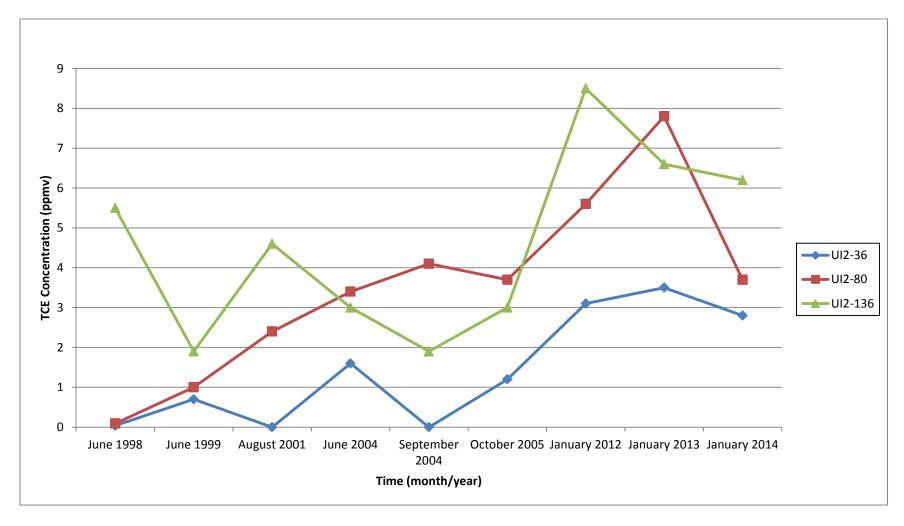


Figure 5-2
Historic Total TCE Compound Concentrations vs. Time
Chemical Waste Landfill Well UI-2 Ports

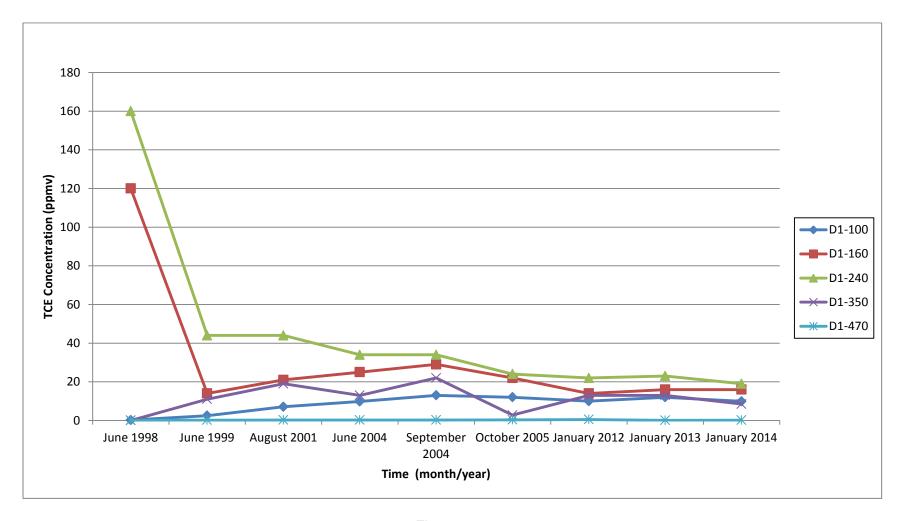


Figure 5-3
Historic Total TCE Compound Concentrations vs. Time
Chemical Waste Landfill Well D1 Ports

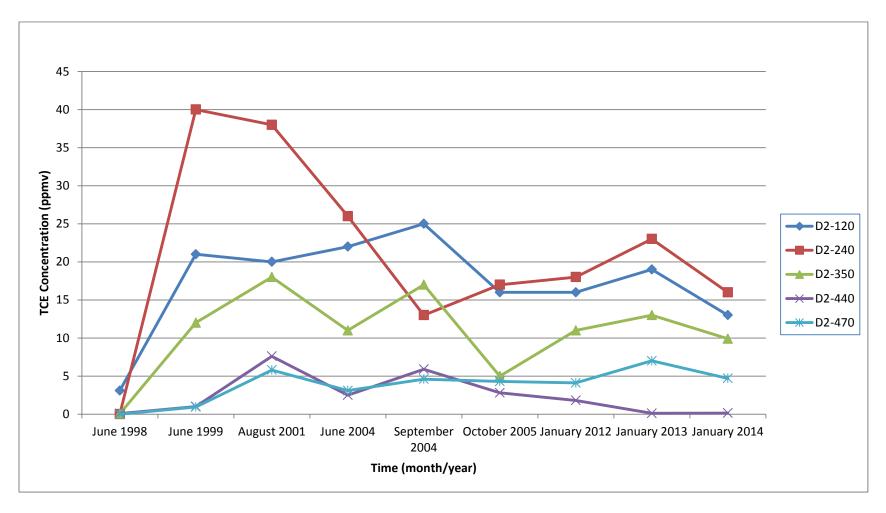


Figure 5-4
Historic Total TCE Compound Concentrations vs. Time
Chemical Waste Landfill Well D2 Ports

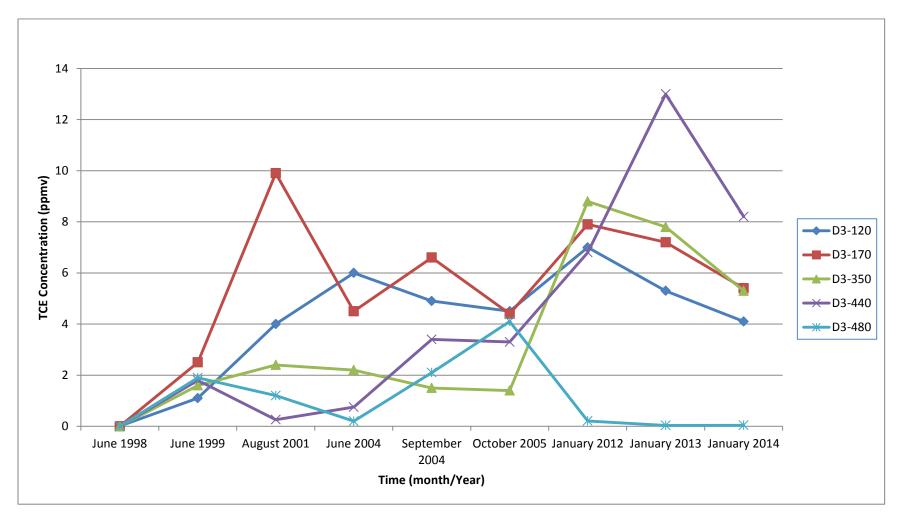


Figure 5-5
Historic Total TCE Compound Concentrations vs. Time
Chemical Waste Landfill Well D3 Ports

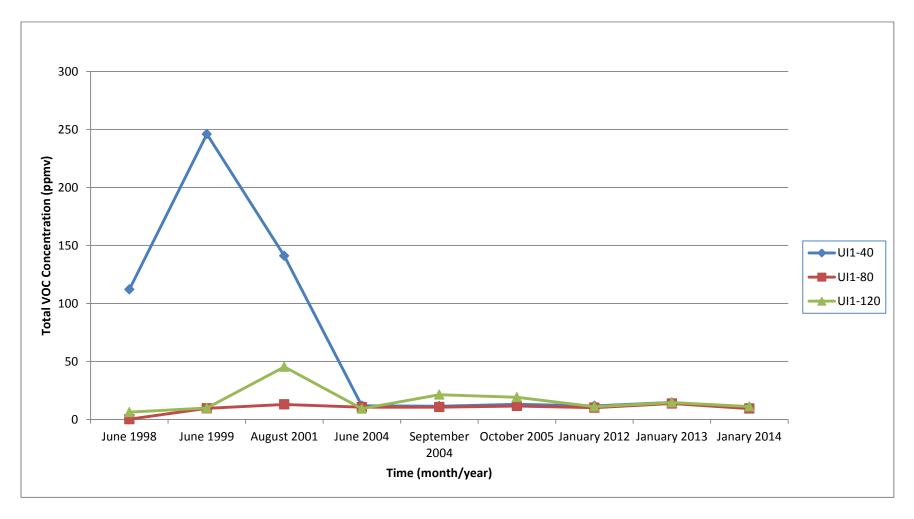


Figure 5-6
Historic Total VOC Compound Concentrations vs. Time
Chemical Waste Landfill Well UI-1 Ports

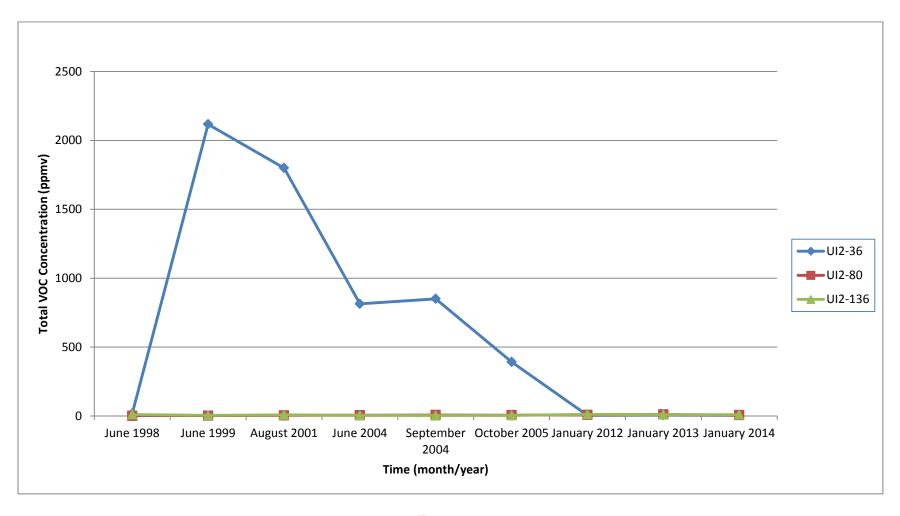


Figure 5-7
Historic Total VOC Compound Concentrations vs. Time
Chemical Waste Landfill Well UI-2 Ports

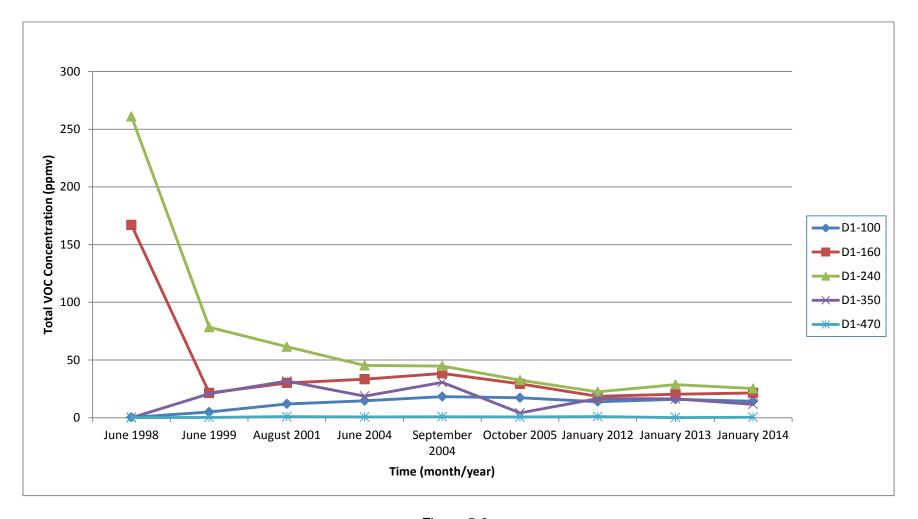


Figure 5-8
Historic Total VOC Compound Concentrations vs. Time
Chemical Waste Landfill Well D1 Ports

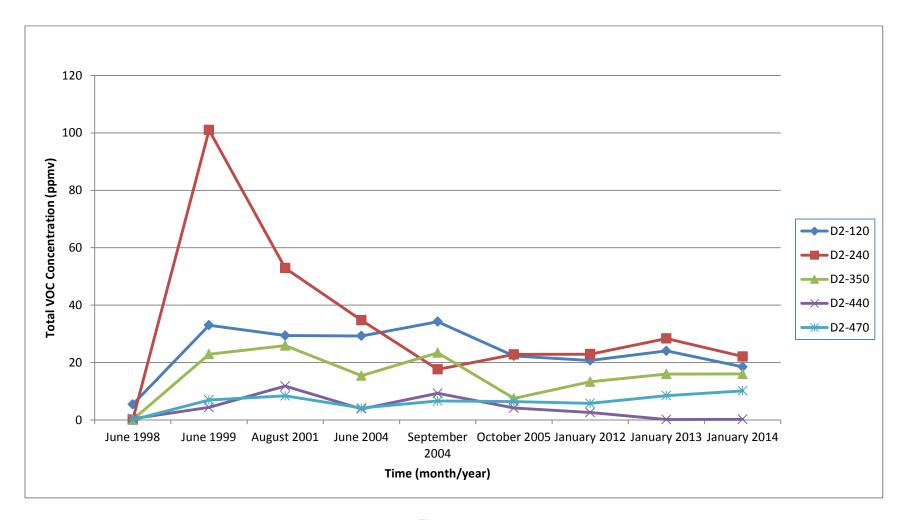


Figure 5-9
Historic Total VOC Compound Concentrations vs. Time
Chemical Waste Landfill Well D2 Ports

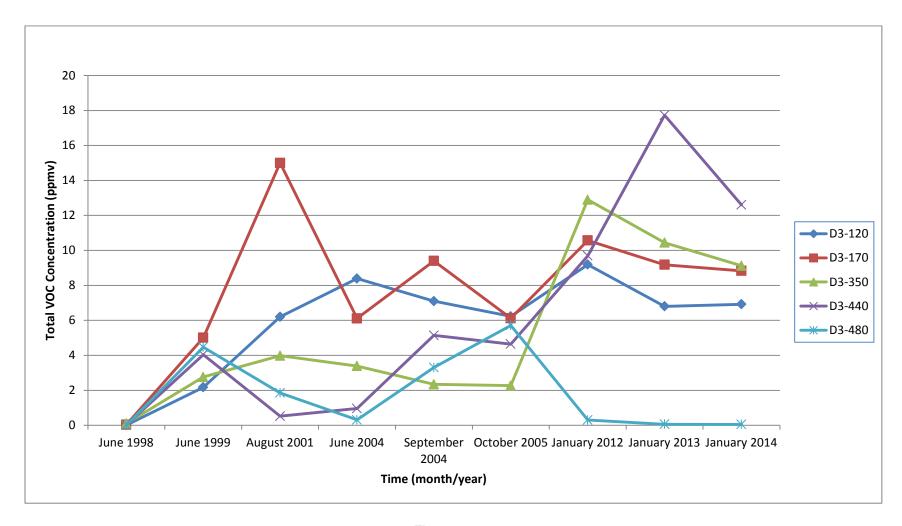


Figure 5-10
Historic Total VOC Compound Concentrations vs. Time
Chemical Waste Landfill Well D3 Ports

The majority of the CWL residual soil-gas plume is represented by the CWL-D1 through D3 wells that have significantly deeper sampling ports, ranging from 110 to 480 feet bgs. TCE is the primary VOC of concern, although trichlorofluoromethane, 1,1,2-trichloro-1,2,2trifluoroethane, PCE, 1,1-dichloroethene, and chloroform were also been detected in most of the samples. Together with TCE, these VOCs comprise the majority of the total VOC concentration calculated for each sample. Concentrations are generally steady or decreasing over time (Figures 5-3 and 5-4), except at the CWL-D3 location (Figure 5-5). Relative to June 1999 results, concentrations are generally higher in the CWL-D3 ports except at the 480 foot bgs port, which has decreased. All sampling ports at CWL-D3 show lower TCE concentrations in 2014 relative to 2013, except at the 480 foot bgs port (unrounded results for 2013 and 2014 are essentially the same, 34 ppby and 35 ppby, respectively). Over the historic monitoring period. the highest TCE and total VOC concentrations in the deepest ports have been consistently observed at the CWL-D2 location (one to two orders of magnitude higher). It is important to note the vertical scale difference on Figures 5-4 and 5-5 relative to Figure 5-3, as it exaggerates the appearance of minor (ppmv) changes in TCE concentration. This is especially true of Figure 5-5. Again, these trends are also reflected in the total VOC plots shown in Figures 5-8 through 5-10.

TCE in groundwater is currently only being detected in CWL-MW10, which is the closest groundwater monitoring well to CWL-D3 (see Figure 2-4). Because of the concern that VOC soil gas could potentially enter a groundwater well through the upper unsaturated portion of the well screen or at casing joints that may not be air-tight and contaminate groundwater samples, passive soil-gas venting devices (i.e., Baroballs™) were installed on all groundwater monitoring wells in March 2012. The Baroball™ devices remained on all groundwater and soil-gas monitoring wells throughout CY 2014 and were inspected during the sampling events. It is unlikely that the current residual VOC soil-gas plume will directly impact groundwater due to the declining surface of the regional aquifer beneath the CWL (Section 4.4 and Annex E of CWL Corrective Measures Study Report [SNL/NM December 2004]). Based upon historical groundwater monitoring results and statistical evaluation of more recent results (Section 4.3), statistically significant evidence of increasing contamination in groundwater has not been observed since completion of the VE VCM in 1998.

Overall, the CY 2014 data set is consistent with historic post-VE VCM soil-gas monitoring results and suggests the residual VOC soil-gas plume beneath the CWL is slowly dissipating in three dimensions through diffusion in the vadose zone. These data and conclusions are consistent with the conceptual site model presented in Annex E of the CWL Corrective Measures Study Report (SNL/NM December 2004).

6.0 INSPECTION, MAINTENANCE, AND REPAIR RESULTS

This chapter presents a summary of CY 2014 inspection, maintenance, and repair activities. Requirements for inspection, maintenance, and repair are presented in Section 3.2 of this report. The CWL post-closure care systems and features that require periodic inspection, maintenance, and/or repair include:

- Final cover system (vegetation and cover)
- Surface-water diversion structures
- Compliance monitoring system (groundwater and soil-gas monitoring networks and sampling equipment)
- Perimeter security fence (including signs, gates, locks, and survey monuments)

A schedule for implementing inspections and prescribed maintenance is provided in PCCP Attachment 1, Section 1.10, Table 1-6. CY 2014 inspections are summarized in the following sections and results are documented on the CWL Post-Closure Inspection Forms/Checklists provided in Annex C of this report, in conformance with the requirements in PCCP Attachment 1, Section 1.9 and 1.10 (NMED October 2009 and subsequent revisions).

6.1 Final Cover System

The final cover system includes the ET Cover vegetation and the cover surface. ET Cover vegetation is inspected by the staff biologist and documented on the Biology Inspection Form/Checklist for the CWL Cover. The ET Cover surface is inspected by a field technician along with the storm-water diversion structures, security fence, and survey monuments, and documented on the Post-Closure Inspection Form/Inspection Checklist.

6.1.1 Vegetation Monitoring and Inspection

Based upon results from ET Cover vegetation inspection conducted in CY 2011, it was determined that the three criteria for successful revegetation had been met (PCCP Attachment 1, Section 1.9). This determination changed the required frequency of cover vegetation inspection to an annual basis. ET Cover vegetation was monitored throughout CY 2014 and cover maintenance activities were performed both before (April, May, June, and August) and after (October) the CY 2014 annual inspection (Section 6.1.2).

The annual Biology Inspection of the ET Cover vegetation was conducted on September 2, 2014 by the SNL/NM staff biologist. The inspection was conducted at the end of the New Mexico growing season so an accurate determination of living plants at the site could be performed. Although 2010 through 2012 meteorological conditions (i.e., lack of significant rainfall events that fully saturate the soil) caused significant vegetation stress, the ET Cover foliar coverage and vegetation continue to meet PCCP requirements for successful revegetation (i.e., greater than 20% foliar coverage, with greater than 50% of that foliar coverage comprised of native species). The ET Cover maintenance work performed in August 2013 (weed removal,

spot herbicide application, and reseeding of sparse areas followed by supplemental watering in September-October 2014) was particularly important relative to helping the previously established ET Cover native grasses recover, and in facilitating the successional development of new (to the ET Cover) native grass species. No barren areas exceeding 200 square feet or large mammal burrows (i.e., greater than four inches in diameter) were observed during the annual biology inspection, but ant hills/burrows and small mammal burrows were observed similar to previous inspections. In general the level of weedy plant species present on the cover was very low. Juvenile four-wing saltbush plants (i.e., potentially deep-rooted plants) were identified across the cover but at a very low (i.e., trace) percent foliar coverage.

The foliar coverage based on the September annual inspection was approximately 44%, of which 98% is native vegetation (Inspection Form in Annex C). This is an improvement from 2013 inspection results, which was 38% foliar coverage, of which 90% was native vegetation. The successional changes in ET Cover vegetation is evident in the percent foliar coverage of blue grama grass clumps, which decreased from 45% in September 2012 to 18% in September 2013 to 15% in September 2014. Sand dropseed was the dominant native grass in September 2014 (21% foliar coverage), and together with blue grama (15% foliar coverage) comprises the majority of the current ET Cover vegetation. Only trace amounts of four-wing saltbush were observed during the September 2014 inspection. Similar to the 2013 inspection, many weedy species, including weedy grasses, were present on the cover.

The 2014 Chemical Waste Landfill Biology Report (Biology Report) is presented in Annex D of this report and provides background information on ET Cover revegetation efforts. This report includes a summary of 2014 cover maintenance activities and local climate trends, additional details on the September Biology Inspection and the successional development of the native grasses, ET Cover photographs, and recommendations. CY 2014 cover maintenance activities are summarized below.

6.1.2 Cover Maintenance

Cover maintenance performed during CY 2014 is summarized below. Overall, the cover maintenance required was less than in 2013 and involved smaller-scale weed removal activities. In all cases, work was performed by hand and no vehicle traffic was allowed on the ET Cover.

April 7 - 11, 2014

Dry, dead weed material (primarily tumbleweeds) was removed from the cover vegetation, storm water diversion features, and perimeter fence line. Approximately 60 cubic yards of compressed weed debris were removed and disposed at the KAFB Landfill. The majority of this material was tumbleweeds that had blown in against the perimeter fence.

May 28 – June 3, 2014

Dry, dead weed material (primarily tumbleweeds) was removed from the storm water diversion features and perimeter fence line. In addition, dead and live weeds were removed from the ET Cover, the western perimeter area between the fence and road, and a 10-foot buffer area

outside the fence. Approximately 30 cubic yards of compressed weed debris were removed and disposed at the KAFB Landfill. The majority of this material was tumbleweeds that had blown in against the perimeter fence.

During the July 2014 groundwater monitoring event and well/equipment inspection, a small burrow was observed just inside the fence line on the western perimeter, near monitoring well CWL-MW11. The staff biologist was notified and inspected the burrow using a small, downhole camera to determine extent and activity level on July 10, 2014. The shallow burrow was determined to be inactive (i.e., abandoned) and was backfilled with adjacent soil.

August 14 - 19, 2014

Dry, dead weed material (primarily tumbleweeds) was removed from the storm water diversion features and perimeter fence. Dead and live weeds were removed from the ET Cover, the western perimeter area between the fence and road, and a 10-foot buffer area outside the fence. The herbicide Strike 3[®] from Winfield Solutions was applied to the western perimeter area between the fence line and the road (i.e., outside of the ET Cover and perimeter fence) in accordance with manufacturer's instructions to prevent additional weed growth in this area immediately adjacent to the ET Cover. Approximately 15 cubic yards of compressed weed debris were removed and disposed at the KAFB Landfill. The majority of this material was tumbleweeds that had blown in against the perimeter fence.

October 28, 2014

Dry, dead weed material (primarily tumbleweeds) was removed from the storm water diversion features and perimeter fence. Dead and live weeds were removed from the ET Cover, the western perimeter area between the fence and road, and a 10-foot buffer area outside the fence. Approximately 1 cubic yard of compressed weed debris was removed and disposed at the KAFB Landfill

CY 2014 Supplemental Watering

The staff biologist recommended supplemental watering in CY 2014 to augment natural precipitation. Water was applied to the ET Cover using a large sprinkler at six locations to ensure an even distribution. The amount of water used at each sprinkler location was calculated based on the aerial coverage of the sprinkler to be equivalent to a ½- inch rain event. Supplemental watering events for CY 2014 are summarized below.

- May 27-28: one, ½-inch-equivalent watering event.
- June 3: one, ½-inch-equivalent watering event.
- October 13-14: one, 1-inch-equivalent watering event.

6.1.3 Cover Inspection

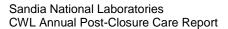
Quarterly cover surface inspections were performed by a field technician in March, June, September, and December of 2014. No inspection parameters required repairs.

6.2 Storm-Water Diversion Structure Inspection

Quarterly inspections of storm-water diversion structures by a field technician were performed in March, June, September, and December of 2014. During the March inspection, windblown tumbleweed debris was noted at the entrance of the two drainage culverts at the south end of the site (part of the southern boundary drainage swale). This tumbleweed debris was removed in early April during ET Cover maintenance work described above (Section 6.1.2). During the September inspection, windblown tumbleweeds were noted in the two drainage culverts at the south end of the site. The culverts were cleared during the inspection. During the December inspection, soil accumulation in excess of 6-inches was noted in the culvert at the southwest corner of the site. The soil was removed from the culvert at the time of the inspection. No other inspection parameters required repairs.

6.3 Monitoring Well Network Inspection

Semi-annual inspection of the groundwater monitoring network and sampling equipment was performed by a field technician in January and July of 2014. In January the annual inspection for the soil-gas monitoring wells and sampling equipment was also performed. No inspection parameters required repairs. Baroball™ passive venting devices remain on all soil-gas and groundwater monitoring wells, and are in good condition.


During the July groundwater monitoring well inspection, a small animal burrow was observed just inside the fence line on the western perimeter, near monitoring well CWL-MW11. The staff biologist was notified and addressed the burrow (see Section 6.1.1).

6.4 Security Fence Inspection

Quarterly inspections of the security fence, access controls (gates, locks, signs), and survey monuments were performed by a field technician in March, June, September, and December of 2014. During the March inspection, windblown tumbleweed debris was noted on the perimeter fence. This tumbleweed debris was removed in early April during ET Cover maintenance work described above (Section 6.1.2). During the June inspection, the western most survey benchmark was covered with windblown soil, which was cleared/removed at the time of the inspection. During the September inspection, the two western-most survey benchmarks were covered with windblown plant debris and soil. The survey benchmarks were cleared during the inspection. During the December inspection, tumbleweed debris was observed on the perimeter fence. The tumbleweeds were removed from the fence during the inspection. No other inspection parameters required repairs.

6.5 Emergency Equipment Inspection

For the CWL, quarterly inspection of emergency equipment listed in PCCP Attachment 6, Table 6-4, is required. This equipment is inspected weekly and documented on the CAMU 90-Day Area inspection forms. Any repairs or replacement of equipment are performed, as necessary, to maintain compliance with requirements for emergency equipment.

Calendar Year 2014

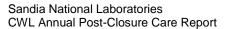
This page intentionally left blank.

7.0 REGULATORY ACTIVITIES

On June 2, 2011, the NMED approved closure of the CWL and the PCCP took effect (Kieling June 2011). NMED-approved Permit modifications and DOE/Sandia submittals since the PCCP became effective are summarized in Chapter 1. Regulatory activities in CY 2014 consisted of one submittal of two updated reference documents cited in the PCCP and submittal of the Calendar Year 2013 Chemical Waste Landfill Annual Post-Closure Care Report (SNL/NM March 2014). These activities are summarized below in Sections 7.1 through 7.3, respectively.

7.1 Permit Modification Requests

There were no Permit modification requests in CY 2014.


7.2 Permit Submittals

On March 25, 2014, DOE and Sandia submitted the Chemical Waste Landfill Annual Post-Closure Care Report, Calendar Year 2013 to NMED (SNL/NM March 2014).

On July 8, 2014, DOE and Sandia submitted two updated reference documents cited in the PCCP in accordance with requirements of Attachment 2, Section 2.0 and Attachment 3, Section 3.9 of the PCCP (Todd July 2014). Revisions included updates to keep the reference documents current and to reflect ongoing modifications and improvements in industry practices. The revised reference documents became effective on June 16, 2014.

7.3 Technical Communication

There were no technical communications with NMED staff in CY 2014.

Calendar Year 2014

This page intentionally left blank.

8.0 SUMMARY AND CONCLUSIONS

A summary of CY 2014 activities and results is provided in this chapter, along with conclusions.

8.1 Groundwater and Soil-Gas Monitoring

Two semi-annual groundwater monitoring events were conducted in January and July 2014. Groundwater samples were collected and analyzed in accordance with PCCP Attachment 1, Section 1.8 and Attachment 2 requirements. There were no variances, non-conformances, or project-specific issues related to the sampling activities.

Statistical assessment was conducted on results from replacement well CWL-BW5 and new wells CWL-MW9, CWL-MW10, and CWL-MW11. There was no statistically significant evidence of increasing contamination and no hazardous constituent 95% LCL of the mean exceeded its respective concentration limit. Groundwater surface elevation, hydraulic gradient, flow direction, and groundwater flow rate have been determined and are consistent with historical results.

One annual soil-gas monitoring event was conducted in January 2014. Samples collected from all wells were analyzed for VOCs by analytical method TO-15 for the second time (TO-14 was used prior to 2013). TCE was detected in all samples at concentrations ranging from 0.035 parts ppmv at CWL-D3 (480 foot bgs sample port) to 19 ppmv at CWL-D1 (240 foot bgs sample port). The maximum soil-gas concentration from the three deepest sampling ports (CWL-D1-470, CWL-D2-470, and CWL-D3-480) was TCE at a concentration of 4.7 ppmv (CWL-D2-470). In addition, 1,1,2-trichloro-1,2,2-trifluoroethane; trichlorofluoromethane; and PCE were detected in all samples at lower concentrations. The 95% LCL of the mean was calculated and compared to the 20 ppmv trigger level for all VOCs that exceeded the threshold value of 0.5 ppmv from the deepest sampling ports of wells CWL-D1 through CWL-D3. Only five VOCs exceeded 0.5 ppmv at the three deepest sampling ports and all of these detections were from CWL-D2-470. There were no exceedances of the 20 ppmv trigger level. In general, the soil-gas monitoring results continue to indicate the residual VOC soil-gas plume beneath the CWL is slowly dissipating in three dimensions through diffusion in the vadose zone. These data and conclusions are consistent with the conceptual site model presented in Annex E of the CWL Corrective Measures Study Report (SNL/NM December 2004).

8.2 Inspections

Inspections of the CWL final cover system, storm-water diversion structures, compliance monitoring system, and security fence were performed in accordance with PCCP requirements. No repairs were required, but during the December inspection tumbleweed debris was removed from the southern boundary swale (conditions met PCCP specifications, but the debris was removed as preventive maintenance).

Based upon the September biology inspection, the ET Cover continues to meet successful revegetation criteria. ET Cover maintenance was performed in February, August, September,

and October, and included removal of four-wing saltbush, annual weedy species, discrete herbicide application for weed control, seeding, and supplemental watering.

8.3 Regulatory Activities

Regulatory activities in CY 2014 included submittal of the Chemical Waste Landfill Annual Post-Closure Care Report, Calendar Year 2013 and submittal of updated reference documents cited in the PCCP.

8.4 Conclusions

All PCCP monitoring, inspection, and maintenance/repair requirements have been met for CY 2014. This CWL Annual Post-Closure Care Report documents all activities and results as required by the PCCP Attachment 1, Section 1.12.

9.0 REFERENCES

EPA, see U.S. Environmental Protection Agency.

Kieling, J.E., February 2012. "Approval, Class 1 Modification to Chemical Waste Landfill Post-Closure Care Permit for Sandia National Laboratories, November 2011, Sandia National Laboratories, EPA ID No. NM5890110518, HWB-SNL-11-015," New Mexico Environment Department Hazardous Waste Bureau, Santa Fe, New Mexico, February 20, 2012.

Kieling, J.E., June 2011. "Notice of Approval, Closure of Chemical Waste Landfill and Post-Closure Care Permit in Effect, Sandia National Laboratories, EPA ID No. NM5890110518, HWB-SNL-10-013," New Mexico Environment Department Hazardous Waste Bureau, Santa Fe, New Mexico, Jun 2, 2011.

New Mexico Environment Department (NMED), October 2009. "Resource Conservation and Recovery Act, Post-Closure Care Permit, EPA ID No. NM5890110518, to the U.S. Department of Energy/Sandia Corporation, for the Sandia National Laboratories Chemical Waste Landfill," New Mexico Environment Department Hazardous Waste Bureau, Santa Fe, New Mexico, October 15, 2009.

Sandia National Laboratories/New Mexico (SNL/NM), June 2014a. "Data Validation Procedure for Chemical and Radiochemical Data," (AOP 00-03), Sample Management Office, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), June 2014b. "Calendar Year 2013 Annual Groundwater Monitoring Report," SAND2014-15438R, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 2014. "Chemical Waste Landfill Annual Post-Closure Care Report, Calendar Year 2013," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), September 2010. "Chemical Waste Landfill Final Resource Conservation and Recovery Act Closure Report," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), December 2004. "Chemical Waste Landfill Corrective Measures Study Report," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), October 1995. "Chemical Waste Landfill Groundwater Assessment Report," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), December 1992. "Chemical Waste Landfill Final Closure Plan and Postclosure Permit Application," Sandia National Laboratories, Albuquerque, New Mexico.

SNL/NM, see Sandia National Laboratories/New Mexico.

- Todd, J. W., July 2014. "Submittal of Updated Reference Documents Cited in the Chemical Waste Landfill Post Closure Care Permit for the Department of Energy National Nuclear Security Administration/Sandia Site Office and Sandia National Laboratories/New Mexico, EPA ID No. NM5890110518," U.S. Department of Energy, July 8, 2014.
- U.S. Environmental Protection Agency (EPA), January 1999a. "Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, Compendium Method TO-14A," Center for Environmental Research Information, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.
- U.S. Environmental Protection Agency (EPA), January 1999b. "Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, Compendium Method TO-15," Center for Environmental Research Information, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.
- U.S. Environmental Protection Agency (EPA), November 1986. "Test Methods for Evaluating Solid Waste," 3rd ed., Update 3, SW-846, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.

ANNEX A Chemical Waste Landfill CY 2014 Groundwater Monitoring Forms and Reports

Field Forms

Data Validation Reports

Contract Verification Reports

FIELD SAMPLING FORMS

CWL POST-CLOSURE CARE GROUNDWATER MONITORING

Form Title	Corresponding Procedure
Tailgate Safety Briefing	PLA 05-09
Groundwater Sample Collection Field Equipment Check Log	FOP 05-02
Portable Pump and Tubing/Water Level Indicator Decontamination Log Form	FOP 05-03
Field Measurement Log For Groundwater Sample Collection	FOP 05-01
Analysis Request and Chain of Custody*	LOP 94-03

^{*}Completed AR/COC forms are provided in the Data Validation Section of this Annex.

FIELD SAMPLING FORMS JANUARY 2014 GROUNDWATER MONITORING

Weather Conditions: Temp: 52.3 °F Wind Speed:	TAILGATE SA	FETY MEETING FORM
Weather Conditions: Temp: 52.3 °F Wind Speed:	Dept: 4142 Well Location: CWL-BW 5	Date: 01/09/14 Time: 0805
Temp: 52.3 °F Wind Speed: 15 MPH Humidity: 23.1 % Wind Chill MH °F Chemicals Used: Acids in sample containers, standard solutions, Hach Acceu-VAC amputes Safety Topics Presented	Activities: Groundwater monitoring and sampling (Anyone has the right to cease field activities for sa	afety concerns. The buddy system will be used when needed.)
Safety Topics Presented B Be aware of slips, trips, and falls. Keep work area clean and use a stepping stool when necessary. Wear safety boots. Use safe lifting practices. Wear leather gloves if necessary. Be aware of pinch points on pump cable reel and hydraulic tailgate lift. Be aware of chemical hazards. Wear nitrile or latex gloves when sampling. Wear chemical safety goggles. Hospital/Clinic: Sandia Medical Clinic Phone: 844-0911/911 Attendees Printed Name Signature Signature Signature	Temp: 52.3 °F Wind Speed: TMPH	-1
	Other:	ard solutions, Flacil ACCO-VAC ampules 7
work area clean and use a stepping stool when necessary. Wear safety boots. Use safe lifting practices. Wear leather gloves if necessary. Be aware of pinch points on pump cable reel and hydraulic tailgate lift. Be aware of chemical hazards. Wear nitrile or latex gloves when sampling. Wear chemical safety goggles. Wear chemical safety goggles. Hospital/Clinic: Sandia Medical Clinic Phone: 844-0911/911 Attendees Attendees Attendees Printed Name Printed Name Printed Name Printed Name Printed Name Signature Signature Signature Signature Signature		Topics Presented
 ☑ Use safe lifting practices. Wear leather gloves if necessary. ☑ Be aware of pinch points on pump cable reel and hydraulic tailgate lift. ☑ Be aware of chemical hazards. ☑ Wear nitrile or latex gloves when sampling. ☑ Wear chemical safety goggles. ☑ Wear chemical safety goggles. ☑ Wear chemical safety goggles. ☑ Attendees ☑ Attendees ☑ Attendees ☑ Attendees ☑ Printed Name ☑ Signature ☑ Signature ☑ Signature ☑ Signature ☑ Signature 	work area clean and use a stepping stool	(heat / cold stress). Dress accordingly. Wear sunscreen if necessary. Stay
gloves if necessary. Be aware of pinch points on pump cable reel and hydraulic tailgate lift. Be aware of chemical hazards. Wear nitrile or latex gloves when sampling. Wear chemical safety goggles. Wear chemical safety goggles. Hospital/Clinic: Sandia Medical Clinic Phone: 844-0911/911 Attendees Printed Name Signature	X Wear safety boots. ✓	⊠ Be aware of electrical hazards
reel and hydraulic tailgate lift. Be aware of chemical hazards. Be aware of biohazards (snakes, spiders, etc.) Wear nitrile or latex gloves when sampling. Wear chemical safety goggles. Wear chemical safety goggles. Hospital/Clinic: Sandia Medical Clinic Phone: 844-0911/911 Attendees Printed Name Attendees Signature Frinted Name Printed Name Signature		⊠ Be aware of pressure hazards.
## Wear nitrile or latex gloves when sampling. ## Wear chemical safety goggles. ## Wear chemical safety goggles. ## Wear chemical safety goggles. ## Wear communication device (cell phone, EOC pager). ## Avoid spilling purge / decon water. ### Attendees ### Attendees ### Attendees ### Printed Name ### Attendees ### Attendee		No eating or drinking at sampling counter.
Sampling. EOC pager).	☑ Be aware of chemical hazards.	etc.)
Hospital/Clinic: Sandia Medical Clinic Phone: 844-0911/911 Robert Lynch Printed Name Attendees Signature Signature Signature Signature Printed Name Printed Name Signature Signature Signature Signature Signature	•	EOC pager).
Printed Name Robert Lynch Printed Name Signature Signature Signature Signature Signature Signature Signature Signature Signature Printed Name Signature Signature		☑ Avoid spilling purge / decon water.
Printed Name Signature Signature Signature Signature Signature	Hospital/Clinic: Sandia Medical Clinic Phone:	844-0911/911
Printed Name Printed Name Printed Name Signature Signature Signature Signature	PISTIMA	Attendees ////
Printed Name Printed Name Signature Signature		
Printed Name Printed Name Signature Signature	Printed Name Printed Name	Signature William & Dilay
	ALFRED SANTILLANES Printed Name	HUDS-till-
Printed Name Signature	Printed Name	Signature
	Printed Name	 Signature

TAILGATE SAFETY MEETING FORM

Dept: 4142 Well Location: CWL-MW 9	Date: 1/10/14 Time: 0800
Activities: Groundwater monitoring and sampling (Anyone has the right to coase field activities for sa	afety concerns. The buddy system will be used when needed.)
Weather Conditions: Temp: 53.2 °F Wind Speed: 9 MPH	Humidity: 22.5 % Wind Chill NA °F
Chemicals Used: <u>Acids in sample containers, stand</u> Other:	ard solutions, Hach ACCU-VAC ampules 74 1/3/14
Safety 7	Copics Presented
☑ Be aware of slips, trips, and falls. Keep work area clean and use a stepping stool when necessary.	Be aware of environmental conditions (heat / cold stress). Dress accordingly, Wear sunscreen if necessary. Stay hydrated.
ন্ত্ৰ Wear safety boots.	⊠ Be aware of electrical hazards
Use safe lifting practices. Wear leather gloves if necessary.	☑ Be aware of pressure hazards.
	No eating or drinking at sampling counter.
☐ Be aware of chemical hazards.	ill Be aware of biohazards (snakes, spiders, etc.)
Wear nitrile or latex gloves when sampling.	Wear communication device (cell phone, EOC pager).
■ Wear chemical safety goggles.	■ Avoid spilling purge / decon water.
Hospital/Clinic: Sandia Medical Clinic Phone:	844-0911/911 Attendees
Printed Name William Cher	Signature William V. Dilas
Printed Name	Signature Signature
Printed Name	Signatur Sut III
Printed Name	Signature
Printed Name	Signature

TAILGATE SAFETY MEETING FORM

Dept: 4142 Well Location: CWL-MW11	Date: 1/13/2014 Time: 0825
Activities: Groundwater monitoring and sampling (Anyone has the right to cease field activities for sampling	afety concerns. The buddy system will be used when needed.)
Weather Conditions: Temp: 29 °F Wind Speed: 8 MPH	Humidity: 40 % Wind Chill 22 °F
Chemicals Used: Acids in sample containers, stand Other:	lard solutions, Hach ACCU VAC ampules 1/3/14
Safety 7	Topics Presented
⊠ Be aware of slips, trips, and falls. Keep work area clean and use a stepping stool when necessary.	Be aware of environmental conditions (heat / cold stress). Dress accordingly. Wear sunscreen if necessary. Stay
when necessary.	hydrated.
Wear safety boots.	
知 Use safe lifting practices. Wear leather gloves if necessary.	■ Be aware of pressure hazards.
Be aware of pinch points on pump cable reel and hydraulic tailgate lift.	■ No eating or drinking at sampling counter.
Be aware of chemical hazards.	■ Be aware of biohazards (snakes, spiders, etc.)
Wear nitrile or latex gloves when sampling.	□ Wear communication device (cell phone, EOC pager).
Wear chemical safety goggles.	Avoid spilling purge / decon water.
Hospital/Clinic: Sandia Medical Clinic Phone:	844-0911/911
	Attendees
William bibson Printed Name	Signature Silvania Aily
ALFRED SANTILLANES Printed Name	Signature Sutillar
Silbert L. Quintana Printed Name	Signature Signature
Printed Name	Signature
Printed Name	Signature

TAILGATE SAFETY MEETING FORM

Weather Conditions: Temp: <u>54.3</u> °F Wind Speed: <u>+ MPH</u>	Humidity: 26.1 % Wind Chill NA °F
	hard
Chemicals Used: <u>Acids in sample containers, standard</u> Other:	ard solutions, Place ACCU-VAC ampules . /
	opics Presented Be aware of environmental conditions
⊠ Be aware of slips, trips, and falls. Keep work area clean and use a stepping stool	(heat / cold stress). Dress accordingly.
when necessary.	Wear sunscreen if necessary. Stay
when hecessary.	hydrated.
☑ Wear safety boots.	☑ Be aware of electrical hazards
I Use safe lifting practices. Wear leather	图 Be aware of pressure hazards.
gloves if necessary.	
Be aware of pinch points on pump cable	No eating or drinking at sampling counte
reel and hydraulic tailgate lift.	
☑ Be aware of chemical hazards.	Be aware of biohazards (snakes, spiders,
`	etc.)
Wear nitrile or latex gloves when	Wear communication device (cell phone,
sampling.	EOC pager).
■ Wear chemical safety goggles.	☐ Avoid spilling purge / decon water.
Hospital/Clinic: Sandia Medical Clinic Phone:	844-0911/911
	·
	Attendees / / /
Pohert I. Ala	YATh. all
Printed Name	Signature
	Granding of the state of the st
Printed Name	
ALFRED SANTILLANES	Helgel Satille
Printed Name Printed Name Printed Name	Hyd Satilla Signature
ALFRED SANTILLANES	Signature Ville William VIII
ALFRED SANTILLANES	Signature Satilla Signature Aily
Printed Name William Gloson	William & Dilas
Printed Name William Gloson	Signature William & Aily
Printed Name William Gloson Printed Name Robert Lynch	William & Dilas

FIELD MEASUREMENT LOG FOR GROUNDWATER SAMPLE COLLECTION

Project Name: CWL GWM	Project No.: 146422.10.11.03	
Well I.D.: CWL-BW 5	Date: 01/09/14	
Well Condition: see Fuspection Form	Weather Condition: See	Tailgate turn
Method: Portable pump X	Dedicated pump	Pump depth: <u>521'</u>

PURGE MEASUREMENTS

Depth to Water (ft)	Time 24 hr	Vol. (Legal)	Temp (°C)	SC (µS/cm)	ORP (mV)	pН	Turbidity (NTU)	DO (%)	Comments Day L
	0822		57	ne-	·				
514.92		5	17.83	7 7 7 7	243.8	71 61	6.53	71. 6	7.27
516.03		10		929.6	248.0		1.03	75.5	
516.88		15		934.6	254.0	_	1.09	77.2	
517.09		17		931.1	2579		1.01		7-09
517.30		19	1	930.4			1.23		7.10
51746		2)					1.28		7.10
		23	19.70	934.0 935.0		6.99	0.94	76.9	7.07
517.65	1925	<u> </u>	مرد الدسي	733.0	263.1	6.77	0.17		
	17725		94111	pling	,				
				<u> </u>					
_			-						
								-	
					_				
								_	
							·		
									615185
			· ·		,				FB-2 12-18-13/
1							,		
						-		-	4.00 gals purged
									From tubing
									0833

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page

FIELD MEASUREMENT LOG FOR GROUNDWATER SAMPLE COLLECTION

Project Name: CWL GWM	Project No.: 146422.10.11.03
Well I.D.; CWL-MW 9	Date: 01/10/14
Well Condition: See Inspection Form	Weather Condition: See Tail gate Form
Method: Portable pump X De	edicated pump Pump depth: 516'

PURGE MEASUREMENTS

Danth to	Time 24	Vol	Temp	SC	ORP	pH	Turbidity	DO	Comments
Water	hr	(L/gal)	(°C)	(µS/cm)	(mV)	l hur	(NTU)	(%)	
1	, III			~ ′		editable education of the control of	· ·		100m/
(ft)		*******			<u> </u>				
503.10	0816	The state of the s	5	TART	<u> </u>		Mandad A. now a	İ	**************************************
507.57	0834	5	18.43	743.7	249.8	7.07	0.46	18.2	1.70
508.8	0845	10		792,8		7.08	ø.50	18.2	1.69
509.54		15		797.9		7.07	0.84	70.1	1-89
510.09	A THE REAL PROPERTY OF THE PARTY OF THE PART	20	19.01	•	133.8	7.07	0.65	31.8	3.03
5 0.27	0913	23	19.26		118.6	7.06	0.66	X	
510.33		25	19.28	432.0	112.8	7.07	0.64	23.8	2.19
510.39		27	19.19		107.9	7.07	0.47	242	7.79
	0928	29	19.16	829.0	103.7	7.07		25.5	2.36
	0929			pling					
			1				<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		
	:								
					,	***			
And the state of t									
				***************************************			"		
· · · · · · · · · · · · · · · · · · ·									
		/							
			an American						
			al al				<u> </u>		
					<u></u>				
	Portunation of the Control		db-ch-chullrod				,	1	
	WWW.			***************************************					100 100 100 100 100 100 100 100 100 100
		•		***************************************				-	4.00 gals purged
		www.www		·····					4.00 gals purged from Tubing
	NATIONAL AND ADDRESS.						courie tectue	in the second second	0824

IMPORTANT NOTICE: A primed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page

FIELD MEASUREMENT LOG FOR GROUNDWATER SAMPLE COLLECTION

Project Name: CWL GWM	Project No.: 146422.	10.11.03
Well I.D.: CWL-MW 10	Date: 01/14/14	,
Well Condition: See Juspection Fu	Weather Condition:	see This gate Form
Method: Portable pump X	Dedicated pump	Pump depth: <u>515'</u>

PURGE MEASUREMENTS

	Depth to	Time 24	Vol	Temp		ORP	pН	Turbidity	DO	Comments
	Water	hr	(Legal)	(°C)	(µS/cm)	(mV)	_	(NTU)	(%)	D2-11
	(ft)	4200		+•		-				Dry/L
	500.40		 		TART					
	505.6	· ·	_5	16.50		226.6	7.19	2.34	12.3	1.50
	507.26		7_	17.04				4.68	15.1	1.16
	508.83	T	9	17.09	724.0	209.6	7.19	8.25	M . B	1:43
	570.23		11	17.22	727.2	205.5	7.19	9.05	12.4	1.19
•	511.07	0942	12	17.13	725.9	207.0	7.19	9.05	16.8	1,61
	511.81	0951	13	1690	724.3	207.5	7.18	11.1	15.4	1,49
	512.62	0958	14	16.86	722.9	209.7	7.18	11.1	17.4	1.69
	5 3.55		15	17.03	727.5	166.2	7.18	10.7	15.2	1.46
	514.30	1014	16	16.81	723.7	118.1	7.19	10.2	5.U	1.49
	514.79	1020	16.5	16.97	726.3	16.7	7.19	10.6	17.7	1.66
	514.79		well	DRY					,,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
15/147	04.31	0842		51	AX+-				***************************************	
, , , ,	506.30	0858	į	15,21	709.7	101-6	7.20	1.55	27.3	2.72
	507.21	4	Q	16.29		8511	7.19	1.60	22.8	p. 94
		6912		17.13	7 42.5	1,41	7.17	1.90	21.1	2.03
		0913		SA	mplin	A -				
			-		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8				
					Marie N.V.					

iversimplicity	_									1.75
								•	~	L ' 1
										Strom tubing
		- Burning		***		į		İ		2022 / 0
	[Au	PORTANT N	IOTICE: Au	nrinted cau	ou of this down	ราคาที่ สาดาน คดิป	he the door		in affect	The official version is

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page.

FIELD MEASUREMENT LOG FOR GROUNDWATER SAMPLE COLLECTION

Project Name: CWL-GWM	Project No.: 146422.10.11.03	
Well I.D.: CWL-MW11	Date: 1/13/2014	
Well Condition: Good See Finspection	For Weather Condition: See To	ilyate Form
Method: Portable pump X	Dedicated pump	Pump depth: 513

PURGE MEASUREMENTS

Depth to Water (ft)	Time 24 hr	Vol. (L/gal)	Temp (°C)	(µS/cm)	ORP (mV)	pН	Turbidity (NTU)	DO (%)	Comments Do my 1L
998.92	0830		51	art -					
502.84	0912	5	14.15	810	278.2	7.06	0,20	60. [5.89
504.77	0931	10	16.76	822	256.8	7.06	0.69	58.7	5.69
506.73	0953	15	17.04	828.3	251.1	7.07	0.94	56,6	5.48
508.71	10/6	20	17.63	839.7	247.7	7.07	0.76	56.0	5.33
509.78	1029	25	17.67	840.0	246.8	7.07	0.75	540	5.13
5/0.31-	1035	25	12.16	845,2	2433	7-07	0.91	537	5.07
510.96	10 44		17.95	ક નવ.1	2417	7.07	0.93	51.6	4.88
511.65	1053	29		8449	240.93	7.07	0.87	51.9	4.95
-	1054		_5,	imple					
	,			, , , , , , , , , , , , , , , , , , ,					
	•								
enthern A to the control of				*					
	- Company							,	
and vote one man vote									0846
									n 1.6 gallons purged
	A CONTRACTOR OF THE CONTRACTOR	;		and the same	1 mm	•			
	ĺ	٠,			A Carlot				
					- Comment of the Comm				

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page

1

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG Page 1 of 2 SNL/NM Project No.: 146422.10.11.03 SNL/NM Project Name. CWL GWM Calibrations done by R Lynch Date. Make & Model. YSI EXO 1 YSI 6820 Sonde (S/N) with DO, Ec. pH, ORP, and temperature probes: 13C101167 YS1 650 MDS (S/N); NA pH Calibration pH Calibrated to (std): 7,00 pH stoped to (5td): 10,00 7.00 10.00 4.00 Reference value. Value Temp Value Temp Value Temp 7.00 18.26 18.25 I. Time 4.01 10.00 18.22 18.3 18.3 2. Time: 4.07 7.00 18.3 10.00 3, Time. 4 Time Standard let no. 3AE725 3AD782 3AD357 Expiration date: 4/15 5/15 4/15 SC Calibration Reference Value: 1225 uS Standard Lot No : Value Temp Expiration Date 5/15 225 1. Time 0644 18.72 2, Time: 3 Time: 4. Time: ORP Calibration Reference Value: 200 mV Standard Lot No. 1305755 1/14 Value Temp Expiration Date: 200.10 18.07 1. Time 200-16 2. Time 3. Time: 4. Time: DO Calibration 81% air saturation @ 5200 ft Atmospheric Pressure in Hg Calibration Value. 81.20 070 **2**4.3 I. Time. 24.3 2. Time: 3. Time. 4. Time:

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

Standard Lot No. 0161 0167 0168 016 1. Time 0820 9.45 19.5 93.8 791	NM Project Name: CWL	vM	Project No.:	Project No.: 146422.10.11.03					
Make & Model: HACH 2100P HACH 2100Q Scrial No. S/N 10060C003010 Reference Value 20 100 800 Standard Lot No. 0161 0167 0168 016 1. Time 0820 9.45 19.5 93.8 79.6 2. Time 0940 9.61 19.8 91.6 79.8 3. Time 4. Time	ation done by: R Lynch		Date: 1/	Date: 1/9/14					
Reference Value 21 20 100 800 Standard Lot No. 0161 0167 0168 0169 1. Time 0820 9.45 19.5 93.8 79.6 2. Time 0940 9.61 19.8 91.6 79.8 3. Time 4. Time		Т	URBIDIMETER	DIMETER					
Standard Lot No. 0161 0167 0168 016 1. Time 0820 9.45 19.5 93.8 79.6 2. Time 0940 9.61 19.8 91.6 79.8 3. Time 4. Time	& Model: HACH 2100	HACH 2100Q	Scrial No. S.	Serial No. S/N 100600003010					
1. Time 0820 9.45 19.5 93.8 791 2. Time 0940 9.61 19.8 91.6 795 3. Time 4. Time	ence Value	pt 10	20	100	800				
2. Time 0940 9.61 19.8 97.6 798 3. Time 4. Time	ard Lot No.		0167	0168	0161				
3. Time 4. Time	ne 0820	9.45	19.5	93,8	791				
3. Time 4. Time	ne 09.40	9.61	19.0	97.6	795				
	ne	(Acide Annie A							
Comments:	ne	The state of the s							

GROUNDWATER S	SAMPLE COL	LECTION FI	EĽD EĞÜİL	MENT CHEC	K LOG I	Page I of 2		
SNL/NM Project Name: CWL 0	SWM		SNL/NM Project No 146422.10.11.03					
Calibrations done by: R Lynch			Date: 1/10/14					
Make & Model: YSI EXO 1			/					
YSI 6820 Sonde (S/N) with DO,	Ec, pH, ORP, and	temperature probe	es: 13C101167		-			
YSI 650 MDS (S/N): NA						_		
AND VINE OF THE PROPERTY OF TH		pH Ca	libration					
pH Calibrated to (std): 7.00			pH sloped to (std): 10.00					
Reference value:	4.	.00	,	7.00	T I	0 00		
	Value	Temp	Value	Temp	Value	Temp		
1. Time: 0637	3.99	18.4	7.00	18.4	10.01	18.4		
2. Time: 1030	4.01	18.8	7.00	18.7	000	(9.7		
3. Time:					· · · · · · · · · · · · · · · · · ·	_		
4. Time:								
Standard lot no.:	3AD782		3AE725 3AD357					
Expiration date:	4/15		5/15 4/15					
		SC Cal	libration					
Reference Value: 1225 uS			Standard Lot No.: 3AE221					
	Value	Temp	Expiration Dat		5/15			
1. Time: 0640	1224	18.5		SANA JOSÉ	rdala alkali	a Rolling Land		
2. Time: 1032	1227	18.8				4 2.4-2-4		
3. Time:								
4. Time:				in de la company		分别的格局		
		ORP Ca	llibration					
Reference Value	200 mV		Standard Lot N	No. 1305755				
	Value	Тетр	Expiration Dat	e.	1/14			
1. Time: 6638	200.1	185		\$ \$				
2. Time: 1031	200.4	18.3						
3. Time:	•	•						
4 Time.								
		DO Cal	libration					
Calibration Value:	81% air satura	tion @ 5200 ft.	Atmospheric Pressure in Hg					
1. Time: 0636	81.	41	21	1.20				
2. Time: 1029	81.	4	24	.22				
3. Time:				· 				
4 fune:								

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name: C	WL GWM	Project No.:	Project No.: 146422.10.11.03 Date: 1/16/14					
Calibration done by: R Lynd	th .	Date: 1/						
	Ti	URBIDIMETER	BIDIMETER					
Make & Model: HACH 2	100P HACH 2100Q	Serial No. 8	Serial No. 8/N 100600000010					
Reference. Value	RL-+10	20	100	800				
Standard Lot No.	0161	0167	0168	9161				
1. Time 0803	9.92	19.7	98.1	797				
2. Time 0940	9.96	19.4	97.9	796				
3. Time		•						
4. Time								
Comments:								
			•					
	•							

3. Time: 4. Time:

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG Page 1 of 2 SNL/NM Project No.: 146422.10.11.03 SNL/NM Project Name, CWL-GWM Date: 1/13/2014 Calibrations done by: A. Santillanes Make & Model: YSI XO 1 YSI 6820 Sonde (S/N) with DO, Ec, pH, ORP, and temperature probes: 13C101167 YSI 650 MDS (S/N). NA pH Calibration pH sloped to (std): 10.00 pH Calibrated to (std): 7,00 7 00 4,00 10.00 Reference value: Value Temp Value Temp Value Temp 1, Time. 18-2 4.00 13.2 7.00 10.00 18.2 2. Time: 19.4 19.5 19.3 9.98 4.01 7.00 3. Time: 4. Time: Standard lot no.: 3AE221 3AD782 3AD357 Expiration date: 4/15 5/15 1/15 SC Calibration Reference Value. 1225 uS Standard Lot No.: 3AE221 Value Expiration Date: Temp 5/15 1. Time: 225 0642 18.2 19.3 1225 2. Time: 3. Time: 4, Time: **ORP** Calibration 200 mV Standard Lot No. 1305755 Reference Value: Value Temp Expiration Date: 1/14 13-2 0644 1. Time. 200.0 1204 200.0 19.3 2. Time: 3. Time: 4. Time: DO Calibration 81% air saturation @ 5200 ft Atmospheric Pressure in Hg Calibration Value. 0646 24.24 31.50 l. Time. 24, 33 2. Time: /201

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

	-GWM	Project No.:	Project No.: 146422.10.11.03 Date: 1/13/2014 RBIDIMETER				
Calibration done by: A Sontilla	inės	Date: 1/13/20					
	ŢŢ	TRBIDIMETER					
Make & Model: HACH 2100)P Hech 2100Q	Serial No. S	Serial No. S/N 10060C003010				
Reference Valuc	y 10	20	100	800			
Standard Lot No.							
1. Time 0650	9.98	20	99.6 99.7	798			
2. Time / 2 2 0	9.98	20	99.7	796			
3. Time				Portion and the second and the secon			
1. Time							

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG Page 1 of 2 SNL/NM Project No.: 146422.10.11.03 SNL/NM Project Name: CWL GWM Calibrations done by: R Lynch Date: Make & Model: YSI EXO 1 YSI 6820 Sonde (S/N) with DO, Ec, pH, ORP, and temperature probes: 13C101167 YSI 650 MDS (S/N). NA pH Calibration pH Calibrated to (std): 7.00 pH sloped to (std): 10.00 Reference value: 4.00 10.00 Value Temp Value Temp Value Temp 4.02 6.99 18.4 1. Time: 0.01 2. Time: 4.01 7-60 9.99 18.6 18.6 3.99 6.99 3. Time 18.1 18.1 1 B · 1 600 4.00 4. Time: 6.99 10.00 Standard lot no.: 3AE725 3AD782 3AD357 Expiration date: 4/15 5/15 4/15 SC Calibration Reference Value: 1225 uS 3AE221 Standard Lot No.: Value Temp Expiration Date: 5/15 1. Time: 222 2. Time: 224 8.6 3. Time. 0653 8.2 221 4. Time: 222 18.3 **ORP** Calibration 200 mV Standard Lot No. 1305755 Reference Value Value Temp 1/14 Expiration Date: 18:4 1. Time: 2. Time: 0652 200.41 3. Time: 4 Time: DO Calibration 81% air saturation @ 5200 ft. Atmospheric Pressure in Hg Calibration Value: 1 Time 24.45 2. Time: 2.4 24.91 3 Time: 0949 821 4 Time: 24.88

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

Reference Value PL -1 10 20 100	0
Make & Model: HACH 2100P HACH 2100Q Serial No. S/N 10060C0030 Reference Value PL - 1/0 20 100	0
Reference Value PL -1 10 20 100	0
Reference Value PL + 10 20 100	
Standard Lot No. 0161 0167 016	800
	0161
1. Time 0807 9.94 19.7 103	792
2. Time 1030 9.91 19.6 99.9	3 794
3. Time 0828 9-90 19.4 . 101	797
4. Time 0930 9.93 19.6 103	794

Project Name: CWL	Monitoring Well ID#: BW-5		Date: 1-9-13 14 84 130 11			
The following equipment was	s decontaminated at completion of sampling	activities in accordance with FO	P-05-03			
Pump and Tubing Bundle ID#: 1806-792	Water Level Ind	icator ID #: 62187				
Personnel Performing Decontamination:	Personnel Perfor	ming Decontamination:	4.11			
Alfred Santillanes Print Name: Initial:	Alfred Santillane Print Name:	Alfred Santillanes Print Name: Initial:				
Robert Lynch Print Name: Robert Lynch Initial:	Robert Lynch Print Name:	Robert Lynch ZL				
	Condition of Equipment					
Pump: Good Tubi	ing Bundle: Good	Water Level Indicator: Goo	od			
	List of Decontamination Materials					
Distilled or Deonized (circle	one)	HNO ₃				
District of Deorized (Circle		Reagent				
Source: Culligan	UN #:	2031				
Lot Number:	Manufacturer:	AROC				
	Lot Number:	A0305629				

Project Name: CWL	Monitoring Well ID # : N/A	ID # : N/A Date: _							
The following equipment was	s decontaminated at completion of sampling	activities in accordance with FC)P-05-03						
Pump and Tubing Bundle ID #: 1806-792	Water Level Inc	Water Level Indicator ID #: N/A							
Personnel Performing Decontamination: William Gibson Print Name: Robert Lynch Print Name: Initial:	_	rming Decontamination: Init							
A Secretary Constitution of the Constitution o	Condition of Equipment								
Pump: Good Tubi	ng Bundle: Good	Water Level Indicator: N/A							
	List of Decontamination Material	s							
Distilled or Deonized (circle	one)	HNO ₃	,						
Distinct of Decimate (circle		Reagent							
Source: Culligan	UN #:	2031							
Lot Number: 12/18/13	Manufacturer:	AROC							
	Lot Number:	A0305629							

Project Name: CWL-GWM	Monitoring Well ID # : CWL-MW9	Date: 01-10-14
The following equipment wa	s decontaminated at completion of sampling activ	rities in accordance with FOP-05-03
Pump and Tubing Bundle ID #: 1806-792	Water Level Indicate	or ID #: <u>62187</u>
Personnel Performing Decontamination: William Gibson Print Name: Alfred Santillanes Print Name: Initial:	Personnel Performin William Gibson Print Name: Alfred Santillanes Print Name:	Initial:
	Condition of Equipment	
Pump: Good Tub	Ing Bundle: Good W	ater Level Indicator: Good
	List of Decontamination Materials	
Distilled or Deonized (circle	one) Grade: Re	HNO ₃
Source; Culligan	UN#: 20	031
Lot Number: 1218/3	Manufacturer: AF	ROC
	Lot Number: A	0305629

Project Name: <u>CWL-GWM</u>	Monitoring Well ID # : CWL-MV	11		Date: 01-13-14
The following equipment wa	s decontaininated at completion of sa	mpling a	ctivities in accordance with F	OP-05-03
Pump and Tubing Bundle ID #: 1806-792	Water L	vel Indic	cator ID #: <u>62187</u>	
Persouuel Performing Decontamination:	Personns	l Per <u>for</u> i	ning Decontamination:	
Alfred Santillanes Print Name: Initial:	Alfred S Print Nar			itial:
William Gibson Print Name: Initial:	William Print Nar		2 <u>u</u>	r) A wial:
	Condition of Equip	ent	1	
Pump: Good Tub	ing Bundle: Good		Water Level Indicator: G	ood
	List of Decontamination	faterials		
Distilled or Deonized (circle	e one)		HNO ₃	
Distance of Besimes (energy		Grade:	Reagent	
Source: Culligan		UN #:	2031	
Lot Number: 12/18/13	Manufa	turer:	AROC	
	Lot N	mber:	A0305629	

Project Name: CWL-GWM Mon	nitoring Well ID # : CWL-MW10		Date: 01-15-14						
The following equipment was deco	ontaminated at completion of sampling a	pletion of sampling activities in accordance with FOP-05-03							
Pump and Tubing Bundle ID #: 1806-792	Water Level Indi	Water Level Indicator ID #: 62187							
Personnel Performing Decontamination:	Personnel Perform	Personnel Performing Decontamination:							
Robert Lynch	Robert Lynch	72	<u>-</u>						
Print Name: Initial:	Print Name:		al:						
William Gibson Print Name: Initial:	William Gibson Print Name:								
Pump: Good Tubing B	Condition of Equipment	Water Lavel Indicators Goo	-d						
Taluh: Good Tanung B	undle: Good	Water Level Indicator: Goo							
	List of Decontamination Materials								
		HNO ₃							
Distilled or Deonized (circle one) Grade:	Reagent							
Source: Culligan	UN #:	2031							
Lot Number: 12/8/3	Manufacturer:	AROC	<u>.</u>						
	Lot Number:	: A0305629							

SUMMARY SHEET FOR JANUARY 2014 SAMPLES

Sample Summary for CWL GWM January 2014

					Associated			
	Sample		Sample		Equipment Blank	Associated Trip Blank	Associated Field Blank	
Sample ID	Date	ARCOC	Number	Sample Type	(ARCOC #/Sample #)	(ARCOC # / Sample #)	(ARCOC # / Sample #)	Comments
CWL GWM: Project	ct Task # 14	46422.10.1	11.03. Serv	vice Order # CF 32	7-14			
Environmental Sa	mples							
CWL-BW5	9-Jan-14	615185	095107	Environmental	615184 / 095104	615185 / 095109	615185 / 095106	
CWL-BW5	9-Jan-14	615185	095108	Duplicate	615184 / 095104	615185 / 095109	615185 / 095106	
CWL-MW9	10-Jan-14	615187	095112	Environmental	n/a	615187 / 095113	n/a	
CWL-MW10	15-Jan-14	615191	095121	Environmental	n/a	615191 / 095122	615191 / 095120	
CWL-MW11	13-Jan-14	615189	095116	Environmental	n/a	615189 / 095117	n/a	
CWL-EB1	8-Jan-14	615184	095104	Equipment Blank	n/a	615184 / 095105	n/a	Decon prior to CWL-BW5
CWL-FB1	8-Jan-14	615184	095103	QC - DI water	n/a	615184 / 095105	n/a	DI source water
CWL-FB2	9-Jan-14	615185	095106	Field Blank	n/a	615185 / 095109	n/a	at CWL-BW5
CWL-FB3	15-Jan-14	615191	095120	Field Blank	n/a	615191 / 095122	n/a	at CWL-MW10
Waste Characteriz	zation Sam	ples						
CWL-BW5	9-Jan-14	615186	095110	Waste	n/a	615186 / 095111	n/a	No data validation required
CWL-MW9	10-Jan-14	615188	095114	Waste	n/a	615188 / 095115	n/a	No data validation required
CWL-MW10	15-Jan-14	615192	095123	Waste	n/a	615192 / 095124	n/a	No data validation required
CWL-MW11	13-Jan-14	615190	095118	Waste	n/a	615190 / 095119	n/a	No data validation required

DATA VALIDATION REPORTS FOR ENVIRONMENTAL SAMPLES GROUNDWATER MONITORING JANUARY 2014

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date: February 11, 2014

To: File

From: Linda Thal

Subject: GC/MS Organic Data Review and Validation – SNL

Site: CWL GWM

AR/COC: 615184 and 615185

SDG: 341106 Laboratory: GEL

Project/Task: 146422.10.11.03

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM SMO AOP 00-03 Rev 3.

Summary

Seven samples were prepared and analyzed with accepted procedures using method EPA 8260B (VOCs). All compounds were successfully analyzed. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times

The samples were analyzed within the prescribed holding time and properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as follows.

The CCV %Ds were >20% with positive bias for trichlorofluoromethane and trichlorotrifluoroethane. The associated sample results were NDs and will not be qualified.

Blanks

No target analytes were detected in the blanks except as follows.

Chloroform was detected at > the PQL in the EB, sample 341106002 and in the FB, sample -005. The associated sample results were NDs and will not be qualified.

Chloroform was detected at > the PQL in the FB sample -001. No samples were associated with this FB.

Surrogates

All surrogate recoveries met QC acceptance criteria.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD acceptance criteria were met. It should be noted that the MS/MSD analyses were performed on a sample of similar matrix from ARCOC 615186. No sample data will be qualified as a result.

Laboratory Control Sample (LCS)

All LCS acceptance criteria were met.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Other QC

A TB and a FB was submitted with each AR/COC. An EB was submitted with AR/COC 615184 and was applied to the samples submitted with AR/COC 615185. A field duplicate pair was submitted with AR/COC 615185. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 02/12/14

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date: February 11, 2014

To: File

From: Linda Thal

Subject: Inorganic Data Review and Validation – SNL

Site: CWL GWM

AR/COC: 615184 and 615185

SDG: 341106 Laboratory: GEL

Project/Task: 146422.10.11.03

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03 Rev 3.

Summary

Three samples were prepared and analyzed with approved procedures using method EPA 6020 (ICP-MS). Data were reported for all required analytes. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were prepared and analyzed within the prescribed holding times and properly preserved.

ICP-MS Instrument Tune

The ICP-MS tune met QC acceptance criteria.

Calibration

All initial and continuing calibration met QC acceptance criteria.

Reporting Limit Verification

All CRA/CRI recoveries associated with the samples met QC acceptance criteria.

It should be noted that the CRI was analyzed at the PQL and not at 2X the PQL for all target analytes.

Blanks

No target analytes were detected in the blanks.

ICP -MS Internal Standards

The ICP-MS internal standards met QC acceptance criteria.

Matrix Spike (MS)

The MS met all QC acceptance criteria.

Laboratory Replicate

The replicate met all QC acceptance criteria.

Laboratory Control Sample (LCS)

The LCS met all QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were evaluated because the sample concentrations of Ca were > those in the ICS solution. All QC acceptance criteria were met.

ICP Serial Dilution

The serial dilutions met all QC acceptance criteria.

Other QC

An EB was submitted with AR/COC 615184 and was applied to the samples submitted with AR/COC 615185. A field duplicate pair was submitted with AR/COC 615185. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 02/12/14

Sample Findings Summary

AR/COC: 615184, 615185 Page 1 of 1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC

All other analyses met QC acceptance criteria; no further data should be qualified.

Data Validation Summary Worksheet

AR/COC #: 615184 and 615185

Site/Project: CWL GWM

Validation Date: 02/11/2014

SDG #: 341106

Laboratory: GEL

Validator: Linda Thal

Matrix: Aqueous

of Samples: 10 CVR present: Yes

Analysis Type: X Organic X Metals

 $AR/COC(s) \ present: Yes \\ \hspace{1.5cm} \square \ Rad \quad \square \ Gen \ Chem$

	Requested Analyses Not Reported												
Sample Number Laboratory ID organic genchem metals rad Comments													
None													

	Hold Time/Preservation Outliers													
Sample Number	Sample Number Laboratory ID Analysis Pres. Coll. Date Prep. Date Anal. Date													
None														

Comments: Sampled 01/08 and 09/2014; EB to be applied to samples on AR/COC 615185; Samples on ARCOC 615186 are not for data validation

Validated by: X Mal

Organic Worksheet (GC/MS)

AR/COC #: 615184 and 615185 SDG #: 341106 Matrix: Aqueous

Laboratory Sample IDs: 341106001, -002, -004, -005, -006, -008, -010

Method/Batch #s: 8260B: 1360659 Tuning (pass/fail): Pass TICs Required? (yes/no): No

			Calibi	ration			5X				MS/		TBs-	FB	
Anal (outli		Int.	RF	RSD/ R ²	(ICV) CCV %D	Method Blank	(10X) MB	LCS %R	MS %R	MSD %R	MSD RPD	EB -002	004	-001 DI water	FB -005
Trichlorofluoromethan	ie	NA	. ✓	✓	+20.9	✓	NA	✓	✓	✓	✓	✓	✓	✓	✓
Chloroform	NA	. 🗸	✓	✓	✓	NA	✓	✓	✓	✓	2.58	✓	2.71	2.87	
Trichlorotrifluoroethan	. 🗸	✓	+22	✓	NA	✓	✓	✓	✓	✓	✓	✓	✓		
						D. A	2 411								
Sample ID				S	ourrogate	Recovery (Juthers								
None															
	,				IS	Outliers							1		
Sample ID	Area	RT	Area	RT	Area	R	Γ	Area	RT		Area	RT	A	rea	RT
None															

Comments: HTs OK: ICAL VOA6.I 01/08/2014; 6 TAL only

MS/MSD performed on SNL sample 341106011 from ARCOC 615186 which is not part of DV; spiked with trichlorotrifluoroethane.

EB applies the samples on AR/COC 615185. FB -001 not applied to anything per client request.

Inorganic Metals Worksheet

AR/COC #: 615184 and 615185 SDG #: 341106 Matrix: Aqueous

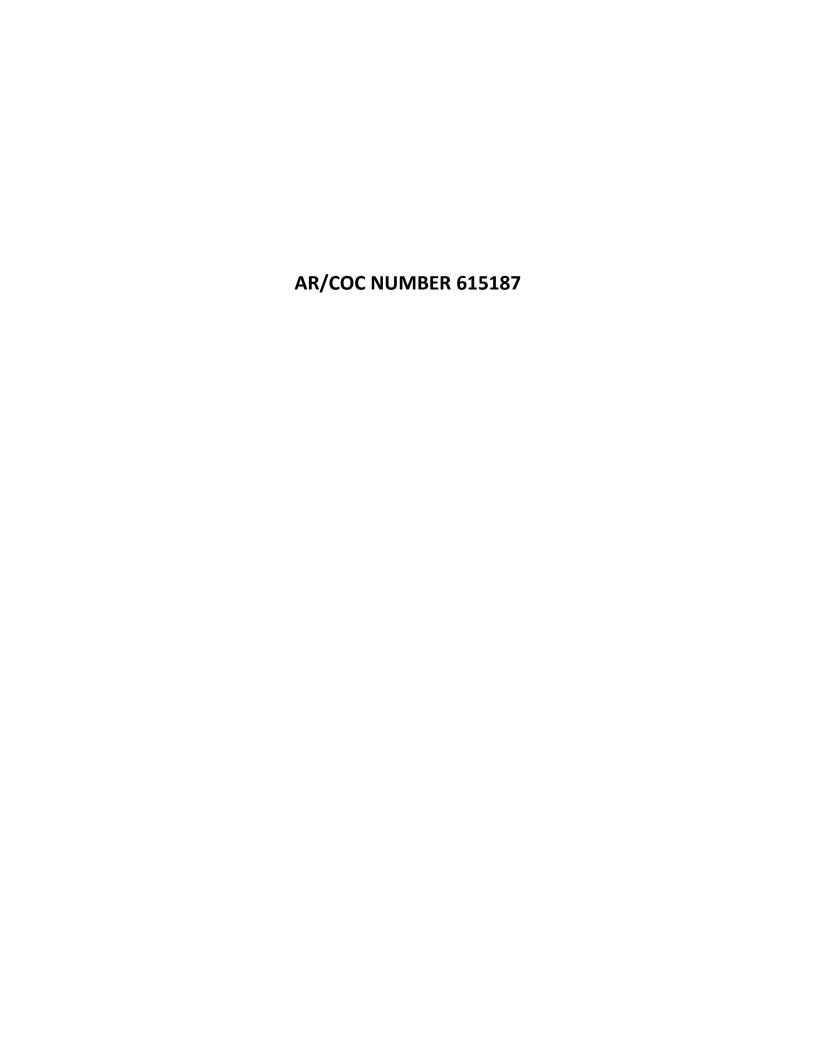
Laboratory Sample IDs: 341106003, -007, -009

Method/Batch #s: **3005/6020**: 1359447/1359446(prep)

ICPMS Mass Cal (pass/fail): Pass ICPMS Resolution (pass/fail): Pass

Analyte			Calil	bration			Method Blank	5X Blank or	LCS	MS	Lab Rep	Serial	ICS AB	ICS A ± MDL ug/L	CRA CRI	EB	ЕВ	
(outliers)	Int. mg/L	\mathbb{R}^2	ICV	ccv	ICB ug/L	CCB ug/L	mg/L	(5X MDL) mg/L	%R	%R RPD	RPD	%D	%R	x50 (mg/L)	%R	-003	X5	
None																		
																		\square

	IS Outliers	60-125%		IS Outliers 80-120%						
Sample ID	%Recovery	%Recovery	%Recovery	CCV/CCB ID	%Recovery	%Recovery	%Recovery			
None				None						


Comments: HTs OK; All matrix QC on sample -007; Ca>100 000 ppb for sample -007 and -009, ICS A and AB in criteria

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

Internal Lab														Page _1_ of _1_
Batch No.					SMO Use					^	-		AR/COC	615184
Project Name	:	CWL GWM	Date Samples	Shipped:	1/9/1	4	10 m	SMO A	uthorization:	Dno	Jan		Waste Characterization	
Project/Task	Manager:	Tim Jackson	Carrier/Waybill	l No.	79354	13	19-19-19-1	ѕмо с	ontact Phone	e:			RMMA	
Project/Task	Number:	146422.10.11.03	Lab Contact:		Edie Kent/		171	Larraine Herrera/505-844-3199					Released by COC No.	
Service Order	r:	CF327-14	Lab Destination	n:	GEL			Send R	eport to SMO	D:				✓ 4º Celsius
			Contract No.:		PO 13038	73	e Tres		Rita Kava	naugh/505	5-284-2553		Bill to: Sandia National Laboratorie	
Tech Area:													P.O. Box 5800, MS-0154	_
Building:		Room:	Operational	Site:									Albuquerque, NM 87185-0154	341106
, and			T .	Depth	Date/	Time	Sample	C	ontainer	Preserv-	Collection	Sample	Parameter & Method	Lab
Sample No.	Fraction	Sample Location	Detail	(ft)	Colle		Matrix	Туре	Volume	ative	Method	Туре	Requested	Sample ID
095103	-001 ′	CWL-FB1		NA	1/8/14	13:00	DIW	G	3x40 ml	HCL	G	FB	VOCs (SW846-8260)	001
095104	-001	CWL-EB1		NA	1/8/14	13:00 <	DIW	G	3x40 ml	HCL	G	EB	VOCs (SW846-8260)	002
095104	-015	CWL-EB1/		NA	1/8/14	13:01	DIW	Р	500 ml	HNO3	G	EB	Chromium, Nickel (SW846-602	20) 003
095105	-001	CWL-TB1		NA	1/8/14	13:00	DIW	G	3x40 ml	HCL	G	ТВ	VOCs (SW846-8260)	004
								1						
Last Chain:		Yes Yes	- 2	Sample Date Ent	Tracking ered:		SMC) Use	Special Ins	structions	/QC Requir	rements:	No	Conditions on Receipt
Backgroun	d:	Yes	E	Entered I	by:		120	1.45	Turnarour	d Time	7 Da	y* [15 Day* 30 Day	
Confirmato	ry:	Yes	(QC inits.		The state of the s			Negotiated	TAT				
Sample	N	ame Signa	ture_	Init.	Compan	y/Organizat	ion/Phon	e/Cell	Sample Di	sposal	Return	n to Client	Disposal by Lab	
Team	William (18,110	1128	SNL/4142/5				Return Sa				, , ,	
Members	Robert L		1	-01	SNL/4142/5				Comments			Tim Jackson	n/4142/MS 0729/505-284-2547	
HICHIDOIS		antillanes AlloSal	20	100	Section of the Contract	05-844-513	2010/00/00/00/00/00/00/00/00/00/00/00/00/		1					
		THE							VOC's Rend	ort CWI enh	anced list of c	omnounde		
	H								-		CE,TCE,Freor			Lab Use
1.Relinquishe	d by	that Soutell	Org.4/42	Date	1-9-14	Time //	0100	3 Reline	quished by	1,1-000,70)_, i OL, i ieoi	Org.		Time
Received b	116	Hen	Org.4/42		1/9/19			3. Rece						7, 402 11442
2.Relinguishe	1 6/5			Date	., , ,	Time //		_	quished by			Org.		Time
	-	The period	Org. Gen		1/9/19			_				Org.	10000000	Time
2. Received b	y	Mr parker la	Org. Gen	Date	1-10-14	Time &	173	4. Rece	eived by			Org.	. Date	Time

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

Internal Lab															Page	_1_ of _1_	
Batch No.					SMO Use									AR/COC	618	5185	
Project Name Project/Task		CWL GWM Tim Jackson	Date Samples Si Carrier/Waybill N		2/35			1	uthorization: ontact Phone		ten		Waste Ch	aracterization			
Project/Task		146422.10.11.03	Lab Contact:		Edie Kent/8	308-556-8	3171		Lorraine H	Herrera/50	5-844-3199		Released	by COC No.			
Service Orde	r:	CF327-14	Lab Destination:		GEL		Web w	Send R	eport to SMC	D:					J 2	4º Celsius	
			Contract No.:		PO 130387	3	A COLUMN		Rita Kava	naugh/50	5-284-2553		Bill to: Sandia	National Laboratorie	s (Accou	ints Payable),	
Tech Area: Building:		Room:	Operational S	Site:									P.O. Box 5800 Albuquerque,	, MS-0154 NM 87185-0154	3	41106	
Sample No.	Fraction	Sample Location	access of the same	epth (ft)	Date/7	100	Sample Matrix	Type	ontainer Volume	Preserv- ative	Collection Method	Sample Type	Para	meter & Method Requested		Lab Sample ID	
095106	-001	CWL-FB2		NA	1/9/14	9:25	DIW	G	3x40 ml	HCL	G	FB	VOCs (SW8	46-8260)		005	
095107 /	-001 ′	CWL-BW5 /		521	1/9/14	9:25 /	GW	G	3x40 ml	HCL	G	SA	VOCs (SW8	46-8260)		006	
095107	-015	CWL-BW5		521	1/9/14	9:27 /	GW	Р	500 ml	HNO3	G	SA	Chromium,N	lickel (SW846-602	20)	007	
095108	-001	CWL-BW5		521	1/9/14	9:25 /	GW	G	3x40 ml	HCL	G	DU	VOCs (SW8	46-8260)		068	
095108	-015	CWL-BW5		521	1/9/14	9:27	GW	Р	500 ml	HNO3	G	DU	Chromiam,N	lickel (SW846-602	20)	009	
095109	-001	CWL-TB2 ✓		NA	1/9/14	9:25/	DIW	G	3x40 ml	HCL	G	ТВ	VOCs (SW8	46-8260)	1	616	
															-		
Last Chain:		☐ Yes	Sa	ample	Tracking		SMC) Use	Special Ins	structions	/QC Requir	ements:			Cond	itions on	
Validation Reg'd: Yes				Date Entered:					Special Instructions/QC Requirements: EDD				No		-0.5	Receipt	
Backgroun		Yes	-	ntered				Mar San T	Turnaroun	d Time	7 Da	v*	15 Day*	✓ 30 Day			
Confirmato		Yes		C inits.			4.4	18-107	Negotiated	TAT							
Sample		ame Signa	ature	Init.	Company	/Organiza	tion/Phon	e/Cell	Sample Di		Return	to Client	t /	Disposal by Lab			
	William (Gibson Middle	Malon a	128	SNL/4142/50	05-284-330	07/505-23	9-7367	Return Sar	mples By:							
Members		6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	071	SNL/4142/50	05-844-401	13/505-25	0-709 0 •	Comments	s:	Send Report to	Tim Jackso	on/4142/MS 0729/	505-284-2547			
	111		tille	COL	SNL/4142/50	05-844-513	30/505-22	8-0710	1								
		10							VOCs: Repo	rt CWL enha	anced list of co	ompounds,					
	1								(Chloroform,	1,1-DCE,PC	E,TCE,Freon	11,and Fre	on 113)	8	La	b Use	
1.Relinquishe	ed by	190 Sertille	_Org.4142	Date	1-9-14	Time /	0112	3.Relino	quished by			Org.		Date	Time		
1. Received b		willen	Org.4142	Date	1/9/14	Time /	012	3. Rece	eived by			Org.		Date	Time		
2.Relinquishe	ed by	ulday 1	Org. 4/42	Date	1/9/14	Time //	100	4.Relino	quished by			Org.		Date	Time		
2. Received b	ру	Mhe - Intus	Org. Gel	Date	1-10-14	Time (0735	4. Rece	eived by			Org.		Date	Time		
*Prior confir	mation w	rith SMO required for 7 ar	nd 15 day TAT														

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date: February 17, 2014

To: File

From: Linda Thal

Subject: GC/MS Organic Data Review and Validation – SNL

Site: CWL GWM AR/COC: 615187 SDG: 341182 Laboratory: GEL

Project/Task: 146422.10.11.03

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM SMO AOP 00-03 Rev 3.

Summary

Two samples were prepared and analyzed with accepted procedures using method EPA 8260B (VOCs). All compounds were successfully analyzed. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times

The samples were analyzed within the prescribed holding time and properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as follows.

The CCV %D was >20% with positive bias for trichlorotrifluoroethane. The associated sample results were NDs and will not be qualified.

Blanks

No target analytes were detected in the blanks.

Surrogates

All surrogate recoveries met QC acceptance criteria.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD acceptance criteria were met. It should be noted that the MS/MSD analyses were performed on a sample of similar matrix from AR/COC 615188. No sample data will be qualified as a result.

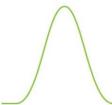
Laboratory Control Sample (LCS)

All LCS acceptance criteria were met.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

Tentatively Identified Compounds (TICs)


TIC reports were not required.

Other QC

A TB was submitted with AR/COC 615187.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 02/17/14

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date: February 17, 2014

To: File

From: Linda Thal

Subject: Inorganic Data Review and Validation – SNL

Site: CWL GWM AR/COC: 615187 SDG: 341182 Laboratory: GEL

Project/Task: 146422.10.11.03

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03 Rev 3.

Summary

One sample was prepared and analyzed with approved procedures using method EPA 6020 (ICP-MS). Data were reported for all required analytes. Problems were identified with the data package that resulted in the qualification of data.

1. Ni was detected in the ICS A at a negative value with an absolute value > the MDL but ≤2X the MDL. The associated sample result was a detect <50X the ICS A value and will be **qualified J-,CK3**.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The sample was prepared and analyzed within the prescribed holding times and properly preserved.

ICP-MS Instrument Tune

The ICP-MS tune met QC acceptance criteria.

Calibration

All initial and continuing calibration met QC acceptance criteria.

Reporting Limit Verification

All CRA/CRI recoveries met QC acceptance criteria.

It should be noted that the CRI was analyzed at the PQL and not at 2X the PQL for all target analytes.

Blanks

No target analytes were detected in the blanks.

ICP -MS Internal Standards

The ICP-MS internal standards met QC acceptance criteria.

Matrix Spike (MS)

The MS met all QC acceptance criteria. It should be noted that the MS analyses were performed on a sample of similar matrix from AR/COC 615188. No sample data will be qualified as a result.

Laboratory Replicate

The replicate met all QC acceptance criteria. It should be noted that the replicate analyses were performed on a sample of similar matrix from AR/COC 615188. No sample data will be qualified as a result.

Laboratory Control Sample (LCS)

The LCS met all QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. The sample was not diluted.

ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were evaluated because the sample concentrations of Ca were > those in the ICS solution. All QC acceptance criteria were met except as noted above in the Summary section.

ICP Serial Dilution

The serial dilution met all QC acceptance criteria. It should be noted that the serial dilution analyses were performed on a sample of similar matrix from AR/COC 615188. No sample data will be qualified as a result.

Other QC

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 02/17/14

Sample Findings Summary

AR/COC: 615187 Page 1 of 1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
SW846 3005/6020 DOE-AL			
	095112-015/CWL-MW9	Nickel (7440-02-0)	J-, CK3

All other analyses met QC acceptance criteria; no further data should be qualified.

Data Validation Summary Worksheet

AR/COC #: 615187	Site/Project: CWL GWM	Validation Date: 02/17/2014
SDG #: 341182	Laboratory: GEL	Validator: Linda Thal
Matrix: Aqueous	# of Samples: 3 CVR present: Yes	Analysis Type: $X \square$ Organic $X \square$ Metals
AR/COC(s) present: Yes	Sample Container Integrity: OK	☐ Rad ☐ Gen Chem

		Requ	iested Anal	lyses Not R	eported	
Sample Number	Laboratory ID	organic	genchem	metals	rad	Comments
None						

			Но	old Time/P	reservation Outli	ers			
Sample Numb	er	Laboratory ID	Anal. Date	Anal. within 2X HT	Anal. beyond 2X HT				
None									

Comments: Sampled 01/10/2014; Samples on ARCOC 615188 are not for data validation

Validated by: X Mal

Organic Worksheet (GC/MS)

AR/COC #: 615187 SDG #: 341182 Matrix: Aqueous

Laboratory Sample IDs: 341182001 and -003

Method/Batch #s: 8260B: 1361700 Tuning (pass/fail): Pass TICs Required? (yes/no): No

			Calib	ration			5X				MS/				
Ana (outli		Int.	RF	RSD/ R ²	(ICV) CCV %D	Method Blank	(10X) MB	LCS %R	MS %R	MSD %R	MSD RPD	TB -003			
Trichlorotrifluoroetha	ne	NA	. 🗸	✓	+27	✓	NA	✓	✓	✓	✓	✓			
				S	Surrogate	Recovery (Outliers								
Sample ID	Sample ID														
None															
	,				IS	Outliers	1			<u> </u>					
Sample ID	Area	RT	Area	RT	Area	R	Γ	Area	RT		Area	RT	Area	1	RT
None															

Comments: HTs OK: ICAL VOA6.I 01/08/2014; 6 TAL only

MS/MSD performed on SNL sample 341180001 from ARCOC 615188 which is not part of DV; spiked with trichlorotrifluoroethane.

Inorganic Metals Worksheet

AR/COC #: 615187 SDG #: 341182 Matrix: Aqueous

Laboratory Sample IDs: 341182002

Method/Batch #s: **3005A/6020**: 1359655(prep)/1359656

ICPMS Mass Cal (pass/fail): Pass ICPMS Resolution (pass/fail): Pass

Analyte (outliers)	Int. mg/L	\mathbb{R}^2	Cali	ccv	ICB ug/L	CCB ug/L	Method Blank mg/L	5X Blank or (5X MDL) mg/L	LCS %R	MS %R	Lab Rep RPD	Serial Dil. %D	ICS AB %R	ICS A ± MDL ug/L x50 (mg/L)	CRA CRI %R		
Ni	NA	✓	√	√	✓	√	✓	NA	✓	√	✓	√	✓	78(039)	√		
																	4
																	\dashv
																	_
																	_
																	4
																	=

	IS Outliers	60-125%			IS Outliers	80-120%	
Sample ID	%Recovery	%Recovery	%Recovery	CCV/CCB ID	%Recovery	%Recovery	%Recovery
None				None			

Comments: HTs OK; All matrix QC on sample 341180002 from AR/COC 615188; Ca>100 000 ppb for sample -002

SMO 2012-ARCOC (4-2012)

Internal Lab				SMO Use											. <u>_</u>	Page	_1_ of _1_
Batch No.				Date Samples Shipped: 1/10/14 SMO Authorization: Journal Waste Character Carrier/Waybill No. Z/3609 SMO Contact Phone: RMMA Lab Contact: Edie Kent/808-556-8171 Lorraine Herrera/505-844-3199 Released by Contact											AR/COC	61	5187
Project Name) :	CWL GW	'M	Date Sample:	s Shipped:	1/10/14	/ !	_	SMO Au	thorization:	Some	lenge	al-	Waste Ch	aracterization		
Project/Task		Tim Jacks	son						1					RMMA			
Project/Task								171				5-844-3199		Released	by COC No.		
Service Orde		CF327-14		Lab Destination	on:	GEL			Send Re	port to SMC						1	4º Celsius
20.1.00			•	Contract No.:		PO 130387	3					5-284-2553		Bill to: Sandia	National Laboratorie		
Tech Area:				O CHILD CO.		10 10000				Tita Tara	ina a gris o o c	201 2000		P.O. Box 5800		.5 (1.000	iii w i ayabic),
Building:		Room:		Operationa	l Cito:										NM 87185-0154		34118
Bulluling.		Kooiii.		Operationa		Date/T	ima	Comple		ntainer	D	Callagtian	Comula		meter & Method		
Sample No.	Eraction		mple Location D	otail	Depth (ft)	Collec		Sample Matrix	Type	Volume	ative	Collection Method	Sample	Para			Lab
Sample No.	Fraction	Sai	npie Location D	Etali	(11)	Collec	ucur 20	Matrix	Type	Volume	alive	Method	Туре		Requested		Sample ID
095112	-001	CWL-MW	/9		516	1/10/14	9:29	GW	G	3x40 ml	HCL	G	SA	VOCs (SW8	46-8260)		001
095112	-015	CWL-MW	/9		516	1/10/14	9:30	GW	Р	500 ml	HNO3	G	SA	Chromium,N	ickel (SW846-60)	20)	002
095113	-001	CWL-TB4	1		NA	1/10/14	9:29 /	DIW	G	3x40 ml	HCL	G	ТВ	VOCs (SW8	46-8260)		003
													2				
												-					
Last Chain	<u> </u>	Yes			Sample	Tracking		SMC) Use	Special Ins	tructions	/QC Reguir	ements:			Cond	itions on
Validation		✓ Yes			Date En	· -		Oilic		EDD	J. 1 4 0 11 0 11 0	✓ Yes	J	No			eceipt
Backgroun		Yes			Entered					Turnaroun	d Time	7 Da	/*	15 Day*	√ 30 Day	110	Joseph I
Confirmato		Yes			QC inits					Negotiated			<u>- </u>				
Sample	N	lame	Signate	ure	Init.	Company	/Organizat	ion/Phon	e/Cell	Sample Di	sposal	Return	to Client		Disposal by Lab		
Team	William (Gibson	William 19	ilv.	208	SNL/4142/50	5-284-330	7/505-23	9-7367	Return Sai	nples By:						
Members	Robert L	vnch	altenih	_	Ri	SNL/4142/50	5-844-401	3/505-25	0-7090	Comments			Tim Jackso	n/4142/MS 0729/5	505-284-2547		
Membero		antillanes	Allasale		as	SNL/4142/50								2			
	S 3000 5 5 15 15		79		<i>D</i> - <i>Q</i>					VOCs: Repor	rt CWI, enha	nced list of c	nmounds				
.,	700				-							E,TCE,Freon		on 113).		La	b Use
1.Relinquishe	d by	125	at De	Org. 4/14.	2 Date	1/10/14	Time /	1.04							Date	Time	20 3 207
1. Received to	<u> </u>	w) en	·	Org. 4/12		, , , ,	Time /		3. Received by Org						Date	Time	
2.Relinguishe	7	mp Jules	many .	Org. 4/14 7		1.0							Org.		Date	Time	
2. Received	-/-		tra	Org. Gen_Date 1-11-14 Time 1010 4. Received by						Org.		Date	Time				
	<u> </u>	ith SMO re	equired for 7 and 15 day TAT								- 3						

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date: February 19, 2014

To: File

From: Linda Thal

Subject: GC/MS Organic Data Review and Validation – SNL

Site: CWL GWM

AR/COC: 615189 and 615191

SDG: 341236 Laboratory: GEL

Project/Task: 146422.10.11.03

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM SMO AOP 00-03 Rev 3.

Summary

Five samples were prepared and analyzed with accepted procedures using method EPA 8260B (VOCs). All compounds were successfully analyzed. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times

The samples were analyzed within the prescribed holding time and properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria.

Blanks

No target analytes were detected in the blanks with the following exception. Chloroform was detected at > the PQL in the FB, sample 341236004. The associated sample result was ND and will not be qualified.

Surrogates

All surrogate recoveries met QC acceptance criteria.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD acceptance criteria were met. It should be noted that the MS/MSD analyses were performed on a sample of similar matrix from AR/COC 615190. No sample data will be qualified as a result.

Laboratory Control Sample (LCS)

All LCS acceptance criteria were met.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Other QC

Two TBs were submitted, one with each AR/COC. A FB was submitted with AR/COC 615191.

No other specific issues that affect data quality were identified.

Reviewed by: Monica Dymerski Level I Date: 02/21/14

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.aqainc.net

Memorandum

Date: February 19, 2014

To: File

From: Linda Thal

Subject: Inorganic Data Review and Validation – SNL

Site: CWL GWM

AR/COC: 615189 and 615191

SDG: 341236 Laboratory: GEL

Project/Task: 146422.10.11.03

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03 Rev 3.

Summary

Two samples were prepared and analyzed with approved procedures using method EPA 6020 (ICP-MS). Data were reported for all required analytes. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were prepared and analyzed within the prescribed holding times and properly preserved.

ICP-MS Instrument Tune

The ICP-MS tune met QC acceptance criteria.

Calibration

All initial and continuing calibration met QC acceptance criteria.

Reporting Limit Verification

All CRA/CRI recoveries met QC acceptance criteria.

It should be noted that the CRI was analyzed at the PQL and not at 2X the PQL for all target analytes.

Blanks

No target analytes were detected in the blanks.

ICP -MS Internal Standards

The ICP-MS internal standards met QC acceptance criteria.

Matrix Spike (MS)

The MS met all QC acceptance criteria. It should be noted that the MS analyses were performed on a sample of similar matrix from AR/COC 615190. No sample data will be qualified as a result.

Laboratory Replicate

The replicate met all QC acceptance criteria. It should be noted that the replicate analyses were performed on a sample of similar matrix from AR/COC 615190. No sample data will be qualified as a result.

Laboratory Control Sample (LCS)

The LCS met all QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were evaluated because the concentrations of Ca were > those in the ICS solution for sample 341236002. All QC acceptance criteria were met.

ICP Serial Dilution

The serial dilution met all QC acceptance criteria. It should be noted that the serial dilution analyses were performed on a sample of similar matrix from AR/COC 615190. No sample data will be qualified as a result.

Other QC

No other specific issues that affect data quality were identified.

Reviewed by: Monica Dymerski Level I Date: 02/21/14

Sample Findings Summary

AR/COC: 615189, 615191 Page 1 of 1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC

All other analyses met QC acceptance criteria; no further data should be qualified.

Data Validation Summary Worksheet

AR/COC #: 615189 and 615191

Site/Project: CWL GWM

Validation Date: 02/19/2014

SDG #: 341236

Laboratory: GEL

Validator: Linda Thal

Matrix: Aqueous

of Samples: 7 CVR present: Yes

Analysis Type: X Organic X Metals

AR/COC(s) present: Yes

Sample Container Integrity: OK

		Requ	iested Anal	lyses Not R	eported	
Sample Number	Laboratory ID	organic	genchem	metals	rad	Comments
None						

	Hold Time/Preservation Outliers														
Sample Number	Laboratory ID	Anal. Date	Anal. within 2X HT	Anal. beyond 2X HT											
None															
	_	_		_											

Comments: Sampled 01/13 and 15/2014; Samples on ARCOC 615190 and 615192 are not for data validation

Validated by: X Mal

Organic Worksheet (GC/MS)

AR/COC #: 615189 and 615191 SDG #: 341236 Matrix: Aqueous

Laboratory Sample IDs: 341236001, -003, -004, -005 and -007

Method/Batch #s: 8260B: 1362014 Tuning (pass/fail): Pass TICs Required? (yes/no): No

		Calibra	ation			5X				MS/	ТВ			
Analyte (outliers)	Int.	RF	RSD/ R ²	(ICV) CCV %D	Method Blank	(10X) MB	LCS %R	MS %R	MSD %R	MSD RPD	-003 -007	FB -004	FB X5	
Chloroform	NA	✓	✓	✓	✓	NA	✓	✓	✓	✓	✓	2.82	14.1	
			S	urrogate	Recovery (Outliers								
Sample ID														
None														
	<u> </u>			IS	Outliers									
Sample ID Area	RT Ar	ea	RT	Area	R	Γ	Area	RT		Area	RT	A	rea	RT
None														

Comments: HTs OK: ICAL VOA6.I 01/08/2014; 6 TAL only; CCVs trichlorotrifluoroethane 20.4 and 20.1%D OK

MS/MSD performed on SNL sample 341235001 from ARCOC 615190 which is not part of DV; spiked with trichlorotrifluoroethane.

Inorganic Metals Worksheet

AR/COC #: 615189 and 615191 SDG #: 341236 Matrix: Aqueous

Laboratory Sample IDs: 341236002 and -006

Method/Batch #s: **3005A/6020**: 1360741(prep)/1360742

ICPMS Mass Cal (pass/fail): Pass ICPMS Resolution (pass/fail): Pass

Analyte			Calil	bration			Method Blank	5X Blank or	LCS	MS	Lab Rep	Serial Dil.	ICS AB	ICS A ± MDL ug/L	CRA CRI		
(outliers)	Int. mg/L	\mathbb{R}^2	ICV	ccv	ICB ug/L	CCB ug/L	mg/L	(5X MDL) mg/L	%R	%R	RPD	%D	%R	x50 (mg/L)	%R		
None																	
																	_

	IS Outliers	60-125%		IS Outliers 80-120%						
Sample ID	%Recovery	%Recovery	%Recovery	CCV/CCB ID	%Recovery	%Recovery	%Recovery			
None				None						

Comments: HTs OK; All matrix QC on sample 341235002 from AR/COC 615190; Ca>100 000 ppb for sample -002 only

Internal Lab																Page_	1 of 1
Batch No.						SMO Use					•	11			AR/COC	615	5189
Project Name Project/Task Project/Task Service Orde	Manager: Number:	CWL GWM Tim Jackso 146422.10. CF327-14	n	Date Samples S Carrier/Waybill N Lab Contact: Lab Destination:		Edie Kent/	362° 308-556-8	1	SMO Co	eport to SMC	Herrera/50	Sec. 5-844-3199		RMMA	Characterization		1º Celsius
Tech Area:				Contract No.:		PO 130387	3		<u> </u>	Rita Kava	inaugh/50:	5-284-2553		1	dia National Laboratorie 00, MS-0154	s (Accour	nts Payable),
Building:		Room:		Operational S	Site:	44.14									e. NM 87185-0154		
Sample No.	Fraction	Samp	ole Location I		Depth (ft)	Date/ Colle		Sample Matrix	Type	ontainer Volume	Preserv- ative	Collection Method	Sample Type		rameter & Method Requested		Lab Sample ID
095116	-001'	CWL-MW1	1		513	1/13/14	10:54	GW	G	3x40 ml	HCL	G	SA	VOCs (SV	V846-8260)		
095116	-015	CWL-MW1	1		513	1/13/14	10:55	GW	Р	500 ml	HNO3	G	SA	Chromium	,Nickel (SW846-602	20)	
095117	-001	CWL-TB6			NA	1/13/14	10:54	DIW	G	3x40 ml	HCL	G	ТВ	VOCs (SV	V846-8260)		
					7					14							
					-				11.0	12 11 11							
						No.				10 42		-		-			
											-			ļ			
														 			
1 A Ch - i-	<u></u>					Tenables	3-2	CHI) Use	Cassialta		JQC Requi		1			litions on
Last Chain Validation	-	Yes Yes			ample ate En	Tracking tered:	- 1	SIVIC	Juse	EDD	Structions	Yes	ements.	No			eceipt
Backgrour		Yes			ntered		17.32	3.75.50	***************************************	Turnarou	nd Time	7 Da	y* [15 Day*	☑ 30 Day		
Confirmate		Yes		Q	C inits		1 2 PM			Negotiate	d TAT		-				
Sample	1	lame	Signa		Init.	Compan	y/Organiza	ation/Phor	ne/Cell	Sample D	isposal	Retur	n to Clien	it [-	Disposal by Lab		
Team	William	Gibson 2	Vollend	July 2	WA	SNL/4142/5	05-284-33	07/505-23	39-7367	Return Sa	imples By	:		AMARIAN TANAN			
Members	Robert I	ynch 3	lary An	nh'	76	SNL/4142/5	05-844-40	13/505-25	50-7090	Comment	s:	Send Report	o Tim Jacks	on/4142/MS 07	29/505-284-2547		
	Alfred S	antilianes /	Ilfel 5-1	The !	WE	SNL/4142/5	05-844-51	30/505-22	28-0710								
	Gilbert (Quintana	Garag.	inter	41	SNL/4143/5	05-284-25	07/505-22	28-2606	-		anced list of o	and the state of t			12	ab Use
1.Relinquish	ad by El	11.15	t-00	Org. 4/42	Date	1-13-1	4 Time	1:27	3 Relin	quished by	, 1, 1-200,1	JE, 10E, 11001	Org		Date	Time	
1. Received		m II		Org. 4/42		1/13/14		13001127	1	eived by			Org		Date	Time	
2.Relinquish		Water to	Truck	Org. 4//42	Date			1200		quished by			Org		Date	Time	
2. Received		- Wat	7	Org.	Date		Time		_	eived by			Org	-	Date	Time	
in i	-,	0110		- 1 45 Jan TAT			-1										

Internal Lab																Page _1_ of _1_
Batch No.						SMO Use						16	· A.		AR/COC	615189
Project Name Project/Task Project/Task Service Orde	Manager: Number:		on 0.11.03	Carrier/Wayb	ab Destination: GEL Send Report to SMO:			w	Waste C RMMA Release	✓ 4° Celsius						
Tech Area:				Contract No.		PO 130387	73			Rita Kava	naugh/505	5-284-2553		-		es (Accounts Payable)
Building:		Room:		Operation	al Site:									P.O. Box 580 Albuquerque	NM 87185-0154	34123
Sample No.	Fraction	Sai	mple Location	Detail	Depth (ft)	Date/ Colle		Sample Matrix	Type	ontainer Volume	Preserv- ative	Collection Method	Sample Type	Par	ameter & Method Requested	
095116	-001	CWL-MW	/11		513	1/13/14	10:54	GW	G	3x40 ml	HCL	G	SA	VOCs (SW	846-8260)	001
095116	-015	CWL-MW	/11		513	1/13/14	10:55	GW	Р	500 ml	HNO3	G	SA	Chromium,	Nickel (SW846-602	20) 062
095117	-001	CWL-TB6	}		NA	1/13/14	10:54	DIW	G	3x40 ml	HCL	G	ТВ	VOCs (SW	846-8260)	003
			4	4, 4												
							i									
Last Chain		Yes			Sample	Tracking	ASSES.	SMC) Use	Special Ins	structions	I /QC Regui	rements:		3	Conditions on
Validation Backgroun		✓ Yes ✓ Yes			Date Entered	tered:				EDD Turnaroun		Yes 7 Da		No 15 Day*	✓ 30 Day	Receipt
Confirmato	_	Yes			QC inits.		W. Fried			Negotiated						
Sample Team	William (Robert L		Signa	ture Jely	Init.	Compan SNL/4142/5 SNL/4142/5		07/505-23	9-7367	Sample Di Return Sar Comments	mples By:		n to Clien		Disposal by Lab	
Members		antillanes	Alfred Sol	the	are Ms1	SNL/4142/5 SNL/4143/5	05-844-513	30/505-22	8-0710	VOCs: Report				on/4142/MS 0729	1303-204-234/	
	1	11. 1			4					(Chloroform,	1,1-DCE,PC	E,TCE,Freoi	n11,and Fre	on 113).		Lab Use
1.Relinquishe	100	Yal Sa	tille	Org. 4/4:		1-13-19			_	quished by			Org		Date	Time
1. Received b		ned	uss	Org. 4/47		1/13/19	Time /	200	3. Rece				Org		Date	Time
2.Relinquishe	-	1/1/	1	Org.	Date		Time	****	_	quished by			Org		Date	Time
2. Received b	- /	LL C	Low Ton Ton	Org. Per		1-14-1	Time (2750	4. Rece	ived by			Org	•	Date	Time

Internal Lab																Page _1_ of _	1_
Batch No. 🚜	IA					SMO Use	1				-1	00		A	AR/COC	615191	
Project Name		CWL GW		Date Sample	s Shipped:	1/15				uthorization	910.	14/1		Waste Charac	eterization		\neg
Project/Task				Carrier/Wayb		21	329		SMO C	ontact Phone			MO	RMMA			
Project/Task		146422.10		Lab Contact:		Edie Kent/8	308-556-8	8171			Marian Salari Marian Pra	5-844-3199		Released by	COC No.		
Service Orde	r:	CF327-14		Lab Destinat		GEL			Send R	eport to SMC						✓ 4° Cels	$\overline{}$
ļ				Contract No.		PO 130387	/3			Rita Kava	naugh/505	5-284-2553		Bill to: Sandia Nat		s (Accounts Paya	ble),
Tech Area:	1/15/14			-										P.O. Box 5800, MS	3-0154	2.11	
Building:	a [A. J/	Room:		Operation										Albuquerque, NM	CAN THE COLUMN TO A STATE OF	3415	-
Sample No.	()V(Fraction	San	nple Location	Detail	Depth (ft)	Date/ Colle		Sample Matrix	Type	Volume	Preserv- ative	Collection Method	Sample Type		ter & Method quested	Lab Sample	1000
095120	-001	CWL-FB3			NA	1/15/14	9:13	DIW	G	3x40 ml	HCL	G	FB	VOCs (SW846-	8260)	000	1
095121	-015	CWL-MW	10		515	1/15/14	9:13	GW	G	3x40 ml	HCL	G	SA	VOCs (SW846-	8260)	00.	
095121	-ø015	CWL-MW	10		515	1/15/14	9:14	GW	Р	500 ml	HNO3	G	SA	Chromium, Nicke	el (SW846-602	20) 00)	6
095122	-001	CWL-TB8			NA	1/15/14	9:13	DIW	G	3x40 ml	HCL	G	ТВ	VOCs (SW846-	8260)	00	7
				¥													
		`															
Last Chain	//0					Tracking		SMC) Use	Special Ins	structions		rements:			Conditions or	n
Validation		✓ Yes			Date En					EDD		✓ Yes		No		Receipt	
Backgroun		Yes			Entered					Turnaroun	CHI PROLESSING	7 Da	<u>Y</u>	15 Day*	✓ 30 Day		
Confirmato	_	Yes	0:	*170000	QC inits		10 .	· /DI	10 11	Negotiated			. 0.	[] p:			
Sample		ame	Signa	ture	Init.			ation/Phon		Sample Di			n to Client	✓ Disp	oosal by Lab		
Team	William (anney,	Zelo)	2018	SNL/4142/5				Return Sa				where the responsible production of			
Members	Robert L		Langue	TOO		SNL/4142/5	111111111111111111111111111111111111111			Comments	5:	Send Report t	o Tim Jackso	n/4142/MS 0729/505-2	284-2547		
	Alfred Sa	antillanes	HANCSO	tille	MA	SNL/4142/5	05-844-51	30/505-22	8-0710	-					16		
					-					-		anced list of c					
4 Dallamatata	11.	11 0-	-	0 4/11	O Dete	1/15/1	V T:	1057	2 Dali	(Chloroform, quished by	1,1-DCE,PC	E,TCE,Freon		0.11 J. 307.		Lab Use	78.8
1.Relinquishe	1	1775	ytill.	Org. 4/4		1. / 1	V 5 (8)						Org.	Date		Time	\dashv
Received b Relinquisher		24,42		Org. 4/4 Org. 4/4	-	11 111		29 52		quished by			Org.			Time	\dashv
2.Relinquishe	6	19619	an m			1100111							Org.	Date		Time	_
2. Received b	y //	Uh Ja	Aug .	Org. Ger	Date	1-16-14	Time *	0745	4. Rece	ived by			Org.	Date	,	Time	

CONTRACT VERIFICATION REVIEW FORMS GROUNDWATER MONITORING JANUARY 2014

Note: The review forms in this section include AR/COC numbers for environmental samples and additional AR/COC numbers for waste characterization samples.

AR/COC Number	Sample Type						
615184	Environmental*						
615185	Environmental*						
615186	Waste						
615187	Environmental*						
615188	Waste						
615189	Environmental*						
615190	Waste						
615191	Environmental*						
615192	Waste						

^{*} These AR/COC forms are provided in the Data Validation Section of this Annex.

Contract Verification Review (CVR)

Project Leader	Jackson	Project Name	CWL GWM	Project/Task N	o. 146422_10.11.03
ARCOC No.	615184, 615185, 615186	Analytical Lab	GEL	SDG No.	341106

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

7.	•			
Line		Comp	olete?	
No.	Item	Yes	No	If no, explain
1.1	All items on ARCOC complete - data entry clerk initialed and dated	X		
1.2	Container type(s) correct for analyses requested	Х		
1.3	Sample volume adequate for # and types of analyses requested	X		
1.4	Preservative correct for analyses requested	X		
1.5	Custody records continuous and complete	X		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Х		
1.7	CV-A-CC CARROLL POCCOS PINE CARROLL AND CA			
	Date samples received	^		
1.8	Condition upon receipt information provided	X		

2.0 Analytical Laboratory Report

Line		Comp	olete?	
No.	Item	Yes	No	If no, explain
2.1	Data reviewed, signature	Χ		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	X		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		
2.6	QC batch numbers provided	X		
2.7	Dilution factors provided and all dilution levels reported	X		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	N/A		
2.10	Narrative provided	X		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Χ		
2.14	All requested result and TIC (if requested) data provided	Х		

Contract Verification Review (Continued)

3.0 Data Quality Evaluation

Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1 Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	Х		
3.2 Quantitation limit met for all samples	Х		
Accuracy a) Laboratory control sample accuracy reported and met for all samples		Х	VOC LCS recovery failed for 1,2,4-Trichlorobenzene, Dichlorofluoromethane (QC1203020537)
Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Х	_	
c) Matrix spike recovery data reported and met		Х	VOC MS recovery failed for Dichlorofluoromethane (QC1203020535); Metals MS recovery failed for Potassium (QC1203017755); MS recovery failed for Total Phenol (QC1203017809)
Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	X		
b) Matrix spike duplicate RPD data reported and met for all organic samples	Х		-
Blank data a) Method or reagent blank data reported and met for all samples		Х	Molybdenum detected in Metals Method Blank (QC1203017752)
b) Sampling blank (e.g., field, trip, and equipment) data reported and met		х	Chloroform detected in FB1 (095103-001), EB1 (095104-001), FB2 (095106-001)
3.6 Contractual qualifiers provided: "J"- estimated quantity; "B"- analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	Х		
3.7 Narrative addresses planchet flaming for gross alpha/beta	N/A		
3.8 Narrative included, correct, and complete	Х		
3.9 Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151	N/A		

Contract Verification Review (Continued)

4.0 Calibration and Validation Documentation

X		
X		
X		
X		
X		
N/A		
N/A		
N/A		
N/A		
N/A		
N/A		
N/A		
N/A		
	X X X N/A N/A N/A N/A N/A N/A N/A	X X X N/A N/A N/A N/A N/A N/A N/A

SMO-2012-CVR (11-2013)

Contract Verification Review (Continued)

0 DDT (NI/A	
f) RRTs for samples and standards provided	N/A	
g) lon abundance ratios for samples and standards provided	N/A	
h) Instrument run logs provided	N/A	
4.4 LC/MS/MS (6850)	N/A	
a) Initial calibration provided		
a) it ittial calibration provided		
b) Continuing calibration provided	N/A	
c) CRI provided	N/A	
d) Internal standard performance data provided	N/A	
e) Chlorine isotope ratios provided (perchlorate only)	N/A	
e) Chilorine isotope ratios provided (perchiorate only)	I IVA	
f) ICS provided (perchlorate only)	N/A	
4.5 Inorganics (metals)		
a) Initial calibration provided	X	
b) Continuing calibration provided	X	-
b) Continuing campation provided		
c) ICP interference check sample data provided	X	
d) ICP serial dilution provided	X	
e) Instrument run logs provided	X	
,		
4.6 Radiochemistry and General Chemistry	X	
a) Instrument run logs provided		

Contract Verification Review (Concluded)

5.0 Data Anomaly Report

Item	Yes	No	Comments
5.1 DAR completed for monitoring and surveillance sample data	N/A		
5.2 Problems or outliers noted		X	
5.3 Verification or reanalysis requested from lab		Х	

6.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted.

Sample/Fraction No.	Analysis		Problems/Comments/Re	esolutions
Were deficiencies unresolved	i? θ Yes x No			
Based on the review, this data	a package is complete.	x Yes	θ Νο	
If no, provide nonconformance	e report or correction request r	number	and date correction request v	vas submitted:
Reviewed by:		Date:02/11/20	014	
Were resolutions adequate ar	nd data package complete?	θ Yes θ No		
Closed by:	Date:			COC 615184 615185 61518

Contract Verification Review (CVR)

Project Leader	Jackson	Project Name	CWL GWM	Project/Task No	. 146422_10.11.01
ARCOC No.	615187, 615188	Analytical Lab	GEL	SDG No.	341180

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line		Com	plete?	
No.	Item	Yes	No	If no, explain
1.1	All items on ARCOC complete - data entry clerk initialed and dated	X		
1.2	Container type(s) correct for analyses requested	X		
1.3	Sample volume adequate for # and types of analyses requested	X		
1.4	Preservative correct for analyses requested	X		
1.5	Custody records continuous and complete	X		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Х		
1.7	Date samples received	X		
1.8	Condition upon receipt information provided	Х		

2.0 Analytical Laboratory Report

Line		Com	olete?	
No.	ltem	Yes	No	If no, explain
2.1	Data reviewed, signature	Χ		
2.2	Method reference number(s) complete and correct	Χ		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	X		
2.4	Matrix spike/matrix spike duplicate data provided	X		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Χ		
2.6	QC batch numbers provided	Χ		
2.7	Dilution factors provided and all dilution levels reported	Χ		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	N/A		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х	<u> </u>	

Contract Verification Review (Continued)

3.0 Data Quality Evaluation

Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1 Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	×		
3.2 Quantitation limit met for all samples	Х		
3.3 Accuracy a) Laboratory control sample accuracy reported and met for all samples		Х	VOC LCS 1203023213 recovery failed for Dichlorodifluoromethane
Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	X		
c) Matrix spike recovery data reported and met	X		
Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	Х		
b) Matrix spike duplicate RPD data reported and met for all organic samples	Х		_
3.5 Blank data a) Method or reagent blank data reported and met for all samples		Х	Molybdenum detected in Metals Method Blank (QC1203018247)
b) Sampling blank (e.g., field, trip, and equipment) data reported and met	X		
3.6 Contractual qualifiers provided: "J"- estimated quantity; "B"- analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7 Narrative addresses planchet flaming for gross alpha/beta	N/A		
3.8 Narrative included, correct, and complete	Х		
3.9 Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151	N/A		

Contract Verification Review (Continued)

4.0 Calibration and Validation Documentation

Yes	No	Comments
X		
X		
X		
Х		
Х		
N/A		
N/A		
N/A	7 7	
N/A		
N/A		
N/A		
N/A		
N/A		
	X X X X X N/A N/A N/A N/A N/A N/A	X X X X N/A N/A N/A N/A N/A N/A

f) RRTs for samples and standards provided	N/A	
g) lon abundance ratios for samples and standards provided	N/A	
h) Instrument run logs provided	N/A	
4.4 LC/MS/MS (6850)	N/A	
a) Initial calibration provided		
b) Continuing calibration provided	N/A	
c) CRI provided	N/A	
d) Internal standard performance data provided	N/A	
e) Chlorine isotope ratios provided (perchlorate only)	N/A	
f) ICS provided (perchlorate only)	N/A	
4.5 Inorganics (metals)		
a) Initial calibration provided	X	
b) Continuing calibration provided	X	
c) ICP interference check sample data provided	X	
d) ICP serial dilution provided	X	
e) Instrument run logs provided	X	
4.6 Radiochemistry and General Chemistry	X	
a) Instrument run logs provided		

Contract Verification Review (Concluded)

5.0 Data Anomaly Report

Item	Yes	No	Comments
5.1 DAR completed for monitoring and surveillance sample data	N/A		
5.2 Problems or outliers noted		Х	
5.3 Verification or reanalysis requested from lab		Х	

6.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted.

Sample/Fraction No.	Analysis		Problems/Comments/Resolutions	
_			·	
Were deficiencies unresolved	l? θ Yes x No			
Based on the review, this dat	a package is complete.	x Yes	θΝο	
			and date correction request was submitted:	
Reviewed by:		Date:02/11/201	4	
Were resolutions adequate a	nd data package complete?	θ Yes θ No		
Closed by:	Date:			
		5		COC 615187, 615188

Contract Verification Review (CVR)

Project Leader	Jackson	Project Name	CWL GWM	Project/Task No.	146422_10.11.03
ARCOC No.	615189, 615190, 615191, 615192	Analytical Lab	GEL	SDG No. 3	41235

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line		Comp	olete?	
No.	ltem	Yes	No	If no, explain
1.1	All items on ARCOC complete - data entry clerk initialed and dated	Х		
1.2	Container type(s) correct for analyses requested	Х		
1.3	Sample volume adequate for # and types of analyses requested	X		
1.4	Preservative correct for analyses requested	X		
1.5	Custody records continuous and complete	Х		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Х		
1.7	Date samples received	Х		
1.8	Condition upon receipt information provided	X		

2.0 Analytical Laboratory Report

Line		Com	olete?	
No.	Item	Yes	No	If no, explain
2.1	Data reviewed, signature	X		
2.2	Method reference number(s) complete and correct	X		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Χ		
2.4	Matrix spike/matrix spike duplicate data provided	X		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Χ		
2.6	QC batch numbers provided	Χ		
2.7	Dilution factors provided and all dilution levels reported	Χ		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	N/A		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Χ		
2.14	All requested result and TIC (if requested) data provided	Х		

Contract Verification Review (Continued)

3.0 Data Quality Evaluation

Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1 Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	Х		
3.2 Quantitation limit met for all samples	Х		
Accuracy a) Laboratory control sample accuracy reported and met for all samples		Х	VOC LCS 1203024553 recovery failed for 2-Hexanone
Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	х		
c) Matrix spike recovery data reported and met	Х		
Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	Х		
b) Matrix spike duplicate RPD data reported and met for all organic samples	Х		
3.5 Blank data a) Method or reagent blank data reported and met for all samples		Х	Acetone detected in VOC Method Blank (1203024552); Molybdenum detected in Metals Method Blank (QC1203020754)
b) Sampling blank (e.g., field, trip, and equipment) data reported and met		Х	Chloroform detected in FB3 (095120-001)
3.6 Contractual qualifiers provided: "J"- estimated quantity; "B"- analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	Х		
3.7 Narrative addresses planchet flaming for gross alpha/beta	N/A		
3.8 Narrative included, correct, and complete	Х		
3.9 Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151	N/A		

SMO-2012-CVR (11-2013)

Contract Verification Review (Continued)

4.0 Calibration and Validation Documentation

Yes	No	Comments
X		
Х		
×		
X		
X		
		-
N/A		
N/A		
N/A		
N/A		
N/A		
	X X X X X N/A N/A N/A N/A N/A N/A N/A	X X X X X N/A N/A N/A N/A N/A N/A N/A

f) RRTs for samples and standards provided	N/A	
g) Ion abundance ratios for samples and standards provided	N/A	
h) Instrument run logs provided	N/A	
4.4 LC/MS/MS (6850)	N/A	
a) Initial calibration provided		
b) Continuing calibration provided	N/A	
c) CRI provided	N/A	
d) Internal standard performance data provided	N/A	
e) Chlorine isotope ratios provided (perchlorate only)	N/A	
f) ICS provided (perchlorate only)	N/A	
4.5 Inorganics (metals)		
a) Initial calibration provided	×	
b) Continuing calibration provided	X	
c) ICP interference check sample data provided	Х	
d) ICP serial dilution provided	X	
e) Instrument run logs provided	X	
4.6 Radiochemistry and General Chemistry	X	
a) Instrument run logs provided		

Contract Verification Review (Concluded)

5.0 Data Anomaly Report

Item	Yes	No	Comments
5.1 DAR completed for monitoring and surveillance sample data	N/A		
5.2 Problems or outliers noted		X	
5.3 Verification or reanalysis requested from lab		Х	

6.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted.

Sample/Fraction No.	Analysis	Problems/Comments/Resolutions
Were deficiencies unresolved	l? θ Yes x No	
Based on the review, this date	a package is complete.	x Yes θ No
If no, provide nonconformanc	e report or correction request r	number and date correction request was submitted:
Reviewed by:		Date: _01/18/2014
Were resolutions adequate a	nd data package complete?	θ Yes θ No
Closed by:	Date:	
	5	5 COC: 615189, 615190, 615191, 615192

FIELD SAMPLING FORMS JULY 2014 GROUNDWATER MONITORING

TAILGATE SAFETY MEETING FORM

Dept: 4142 Well Location: CWL-BW5	Date: 7/7/14 Time: 07.57
Activities: Groundwater Monitoring and Sampling (Anyone has the right to cease field activities for sa	fety concerns. The buddy system will be used when needed.)
Weather Conditions: Temp: Bl.6 °F Wind Speed: MPH	Humidity: 44.6 % Wind Chill 67 °F
Chemicals Used: Acids in sample containers, standa Other:	ard solutions, Hach ACCU VAC ampules 71
Safety T	opics Presented
Be aware of slips, trips, and falls. Keep work area clean and use a stepping stool when necessary.	© Be aware of environmental conditions (heat / cold stress). Dress accordingly. Wear sunscreen if necessary. Stay hydrated.
☑ Wear safety boots.	☐ Be aware of electrical hazards
☑ Use safe lifting practices. Wear leather gloves if necessary.	⊠ Be aware of pressure hazards.
☐ Be aware of pinch points on pump cable reel and hydraulic tailgate lift.	☑ No eating or drinking at sampling counter.
⊠ Be aware of chemical hazards.	☑ Be aware of biohazards (snakes, spiders, etc.)
Wear nitrile or latex gloves when sampling.	☑ Wear communication device (cell phone, EOC pager).
☐ Wear chemical safety goggles. ☐ ■ Wear chemical safety goggles.	☑ Avoid spilling purge / decon water.
Hospital/Clinic: Sandia Medical Clinic Phone:	844-0911/911 Attendees
Robert Lynch Printed Name	Signafure Signafure
Printed Name William 61bsm Printed Name	Signature Suttill Signature Signature
Printed Name	Signature
Printed Name	Signature

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page

TAILGATE SAFETY MEETING FORM

ept: 4142 Well Location: CWL-MW9	Date: 7/8/14 Time: 0750
ctivities: Groundwater Monitoring and Sampling (Anyone has the right to cease field activities for sa	fety concerns. The buddy system will be used when needed.)
eather Conditions:	
emp: 67.0 °F Wind Speed: 10 - 15 MPH	Humidity: 35.1% Wind Chill NA°F
•	• • •
nemicals Used: <u>Acids in sample containers, stands</u> ther:	ard solutions, Hach ACCU-VAC ampules 31,514
	opics Presented
Be aware of slips, trips, and falls. Keep	☐ Be aware of environmental conditions
work area clean and use a stepping stool	(heat / cold stress). Dress accordingly.
when necessary.	Wear sunscreen if necessary. Stay
Wear safety boots.	hydrated. ⊠ Be aware of electrical hazards
Use safe lifting practices. Wear leather gloves if necessary.	☑ Be aware of pressure hazards.
Be aware of pinch points on pump cable reel and hydraulic tailgate lift.	☑ No eating or drinking at sampling counter.
Be aware of chemical hazards.	☑ Be aware of biohazards (snakes, spiders, etc.)
Wear nitrile or latex gloves when sampling.	
Wear chemical safety goggles.	☑ Avoid spilling purge / decon water.
Hospital/Clinic: Sandia Medical Clinic Phone:	844-0911/911
	Attendees 1
Photounh	WATE (
Printed Name	- Phynce
	Signature
Printed Name William Gibson Printed Name	Hyde atille
Printed Name	Signature
(N) 1/1/164 61/2500	William Dill
Printed Name	Signature
Printed Name	Signature
•	

TAILGATE SAFETY MEETING FORM

Dept: 4142 Well Location: CWL- MW II	Date: 7/9/14 Time: 0728
Activities: Groundwater Monitoring and Sampling (Anyone has the right to cease field activities for sa	fety concerns. The buddy system will be used when needed.)
Weather Conditions: Temp: <u>7-0</u> °F Wind Speed: <u> </u>	Humidity:365% Wind Chill 女本 °F
Chemicals Used: Acids in sample containers, stands Other:	ard solutions. Hach ACCU-VAC ampules 7-14-17
Safety T	opics Presented
⊠ Be aware of slips, trips, and falls. Keep work area clean and use a stepping stool when necessary.	Be aware of environmental conditions (heat / cold stress). Dress accordingly. Wear sunscreen if necessary. Stay hydrated.
☑ Wear safety boots.	Be aware of electrical hazards
Use safe lifting practices. Wear leather gloves if necessary.	Be aware of pressure hazards.
☑ Be aware of pinch points on pump cable reel and hydraulic tailgate lift.	धे No eating or drinking at sampling counter.
☐ Be aware of chemical hazards.	☑ Be aware of biohazards (snakes, spiders, etc.)
Wear nitrile or latex gloves when sampling.	Wear communication device (cell phone, EOC pager).
■ Wear chemical safety goggles.	☑ Avoid spilling purge / decon water.
Hospital/Clinic: Sandia Medical Clinic Phone:	
Robert Lynch	Rolly nch
Printed Name HUFRED SANTILL ANES Printed Name	Signature Alfil Satisle
William Gibson	Signature Dilliany Dill
Printed Name	Signature
Printed Name	Signature
Printed Name	Signature

7/11/14

TAILGATE SAFETY MEETING FORM

Dept: 4142 Well Location: _CW L- mw ID	Date: 7/10/14 Time: 0746
Activities: Groundwater Monitoring and Sampling	7/11/14 0750
(Anyone has the right to cease field activities for safer	y concerns. The buddy system will be used when needed.)
Weather Conditions: Temp: 77.7°F Wind Speed: MPH	
Chemicals Used: Acids in sample containers, standard Other:	I solutions, Hach ACCU-VAC ampules 2-15-14
Safety Top	pics Presented
Be aware of slips, trips, and falls. Keep work area clean and use a stepping stool when necessary.	 ☑ Be aware of environmental conditions (heat / cold stress). Dress accordingly. Wear sunscreen if necessary. Stay
Wear safety boots. ■	hydrated. ⊠ Be aware of electrical hazards
☑ Use safe lifting practices. Wear leather gloves if necessary.	⊠ Be aware of pressure hazards.
☑ Be aware of pinch points on pump cable reel and hydraulic tailgate lift.	⊠ No eating or drinking at sampling counter.
☑ Be aware of chemical hazards.	■ Be aware of biohazards (snakes, spiders, etc.)
Wear nitrile or latex gloves when sampling.	Wear communication device (cell phone, EOC pager).
■ Wear chemical safety goggles.	■ Avoid spilling purge / decon water.
Hospital/Clinic: Sandia Medical Clinic Phone: 8	
A	tiendees
Printed Name KaberT Lynch	Signature Signature
ALFRED SANTILLANCS	Albestell.
William Gibson	William J. Dilut
Printed Name	Signature
Robert Lynch Printed Name	Signature Signature
William Gibson Printed Name	Signature J Hill
IMPORTANT NOTICE: 4 printed compositions document in LFRED Standard Symposition Standard Stan	nay not be the locustrateurrenty of the the filicial design is Network (SA) design of the page

Project Name: CWL	Project No.: 146422.10.11.03
Well I.D.: CWL-BW 5	Date: 07/07/14
Well Condition: See Inspection Forms	Weather Condition: See Tailpate From
Method: Portable pump X	Dedicated pump Pump depth: 521'

PURGE MEASUREMENTS

			T		 	1			1
Depth to	Time 24	Vol	Temp	SC	ORP	pН	Turbidity	DO	DQ Comments
Water	hr	(Legal)	(°C)	(µS/cm)	(mV)	P11	(NTU)	(%)	mg/L
(ft)	111							war war war and a second a second and cond and	
	NM12			الالالال	1			L	
511.56				STAR	7				
513.45	0900	5	22.70	1073.1	267.9	6.91	0.43	83.1	7.16
513.62		0	23.90		276.8		6.73	83.7	7.04
	10 11	14	25.01		278.1	6.91	0.52	24.5	7.12
513.71	1025	ضًا	24.93	1126.4	274.5	6.90	0.34	84.5	6.98
513.73	1042	LB_	24.81		274.2	6.90	0.29	6×80	84.0 / 6.94
513.71	1058	20	25-65	1137.0	272.3	6.91	0.33	87.8	6.93
513.71	1114	<u> </u>	25.66	1135.9	279.4	6.90	0.30	84.7	6.88
	1115	- AND THE PROPERTY OF THE PARTY	SA	molin	a				>
				mplin	d				
		-		NOTE THE FOREST MAKING WITH THE TOTAL THE VA					

				***************************************					***************************************
									`
		•							
The state of the s		**************************************		***************************************					
							74.55 - 0.3		
S. C. C. C. C. C. C. C. C. C. C. C. C. C.	1								
Ask minore constants	*								,
W-Branch W-1W-1W-	Control of the Contro								1.6 gals purged
Art-Australia	and the same of th						······		Some Libing
Assistanting to the state of th		<u></u>							0825
								1	

Project Name: CWL	Project No.: 146422.10.11.03
Well I.D.: CWL-MW 9	Date: 07/08/14
Well Condition: See Fospetion Forms	Weather Condition: See Tailgatt for-
Method: Portable pump X	Dedicated pump Pump depth: 516'

PURGE MEASUREMENTS

Depth to Water (ft)	Time 24 hr	(L/M)	Temp (°C)	SC (µS/cm)	ORP (mV)	рН	Turbidity (NTU)	DO (%)	DO	Comments	Topics
503.62	0807			STAR	r						>
505.61		5	25.22	**************************************	253.6	Laz	0.47	34. 8	7.86	·	
505-99			24.35	947.7	225.5	4.93	6.31	32.3			fortent me
506.11	1000	15	24.83	9 99. 8	2022	6.94	0.20			3	t. A. ret. ret. ret. ret.
504.09		20		101.8	198.5			35.5	2.90		
506.06		33		1029,4	, , , , , , , , , , , , , , , , , , , ,				3.15		
506.06		24		1030.2				39.5	\$.20		
506.11				1030.9				39.2			
506.19		28		1029.6					3.14		\neg
	1146										
						*					
						- V	••••				

	/*************************************	, , , , , , , , , , , , , , , , , , ,		A A A A A A A (1911)		***************************************		*****************			
CTYVVYTX					y		10000000000000000000000000000000000000				
<u> </u>											\neg
							***************************************		•		
* * * * * * * * * * * * * * * * *						***************************************	······································				
				*	-		**************			,	

							***************************************		•••••		\exists
								-	1.60	als purges tubing 820	
1									Aron.	tubina	
:									0	820	

Project Name: CWL	Project No.: 146422.01.11.03
Well I.D.: CWL-MW 10	Date: 07/10/14 7/11/1
Well Condition: See Inspection forms	Weather Condition: See Tailgate for-
Method: Portable pump X	Dedicated pump Pump depth: 515'

PURGE MEASUREMENTS

		X Y 1	I 77		ODD		[m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DO	
Depth to	Time 24	Vol.	Temp	SC	ORP	рН	Turbidity	DO	DO Comments
Water	hr	(L/gal)	(°C)	(µS/cm)	(mV)		(NTU)	(%)	ng/L
(ft)									
5DO-67	0800		5+	ART-)
505.04		5	23.31	903.7	229.1	7.05	1.48	20.0	1.70
30 31 - 1	<u> </u>	<u></u>		10)	229.1	7.05	,,,,	20.0	1.70 W
506.90	0944	1	23.20	901.3	\$ 194.9		2.08		1.54
508.36	<u> </u>	9	24.47		161.3		1.98		1.45
509.67	-	1 1					1.74		
	1042	12	25.91		133.8	7.08		15.6	1.26
511.07	1108	13	26.29		108.8	7.08		13.9	1.17
512.55	1129	15	26.28				2.17	12.6	1.01
<i>513</i> .43	1141	16	26.39		76.8		2.07	12.2	0.98
514.21	1155	17	77.09	980.7	63.3	7.07	2.67	12.4	0.98
515.05	1210	L 8	27.29	986.0	52.	7.01	3.46	12.6	1.00
			W	ell D	ry				
505.38	0817		STA	ART -					
50674		1	25.53	978.0	12.8	7.09	1.85	63.5	5.17
507.27	0854	1.5	25.04	964.9	-10.9	7.06	1.74		3.34
507.64	9808	7		964.9	1	7.05	1.76	34.9	2.87
	0809			moliv					
					0				
11111	0909 Wil								
,				-				_	
									16 cale amand
									from tubing
									0820/0838

7/11/14

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page

Project Name: CWL	Project No.: 146422.10.11.03
Well I.D.: CWL-MW 11	Date: 07/09/14
Well Condition: See Inspection form	Weather Condition: See Thilgaft for-
Method: Portable pump X	Dedicated pump Pump depth: 513'

PURGE MEASUREMENTS

				I					
Depth to	Time 24	Vol	Temp	SC	ORP	рН	Turbidity	DO	PO Comments
Water	hr	(Legal)	(°C)	(µS/cm)	(mV)	pri	(NTU)	(%)	mg/L
	nr	` 🖳	` ′	,	, ,		, ,		
(ft)									
499.07	0739		511	HRT ~					
502.80		5			2-1-1	1 91	0.39	-00	C 79
			1	_	306.2				5.79
505.25	0927	10	23.67	1018.1	275.9	6.92	0.52	66.4	5.61
506.58		15	26.99	1094.6	315.7	6.95	0.49	70.5	5.61
507.98	1132	20	26.20	1076.9	305.8	6.94	ठ.40	67.8	5.47
508.49	1154	92	27.11	1097.2	305.1	6.95	0.39	6B.3	5.42
509.01	1220	24	27.72	1110.6	310.8	6.95	0.35	67.4	5.29
509.57		26	27.33	1102.4	306.1	6.94	0.39	67.1	5.30
510,16	13 06	28	27.61	110518	300.3	6.94	0.36	65.9	5.18
	1307		SA	mplin	a				
	.,,,,			" 	7				
				,					
		<u> </u>							
								^	-1.6 mals purcea
									from tubing 0802
			 				<u> </u>		0802
									UGUA

GROUNDWATER S	AMPLE COL	LECTION FI	ELD EQUIP	MENT CHEC	CK LOG I	Page 1 of 2				
SNL/NM Project Name: CWL			SNL/NM Project No.: 146422.10.11.03							
Calibrations done by: R Lynch			Date: 7/7/14							
Make & Model: YSI EXO1				7						
YSI 6820 Sonde (S/N) with DO,	Ec, pH, ORP, and	temperature prob	es: <u>13C101167</u>			_				
YSI 650 MDS (S/N): NA						_				
		рН Ся	libration							
pH Calibrated to (std): 7.00 pH sloped to (std): 10.00										
Reference value:	4	.00	,	7.00	1	0.00				
	Value	Temp	Value	Temp	Value	Temp				
1. Time: 0 645	4.01	23.1	6.99	23.)	10.00	23.1				
2. Time: 12/2	4.01	23.4	7.00	23.4	16.00	23.4				
3. Time:	/									
4. Time:										
Standard lot no	3AD782		3AE725							
Expiration date.	4/15		5/15 4/15							
		SC Ca	libration							
Reference Value: 1225 uS			Standard Lot No.: 3AE221							
	Value	Temp	Expiration Dat	te:	5/15					
1. Time: 06 47	1225	23.1				433				
2. Time: 12//	1227	23.4			4.145元	1 4 , , ;				
3. Time:		-				1,7,4				
4. Time										
		ORP C	alibration							
Reference Value:	220 mV		Standard Lot No. 4AA010							
	Value	Temp	Expiration Dat	te:	7/14					
1. Time: 0646	220.0	23.3								
2. Time: [2[3	219.9	23.4								
3. Time:										
4. Time:										
		DO Ca	libration							
Calibration Value:	81% air satura	tion @ 5200 ft.		Atmospheri	c Pressure in Hg					
1. Time 0644	ine 0644 81.8				24,48					
2. Time: 1210	81.7		24	1.50	* 2					
3 Time:										
4. Time:										

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name: CW	L	Project No.:	Project No.: 146422.10.11.03					
Calibration done by: R Lynch		Date: 7	17/14					
TURBIDIMETER								
Make & Model: HACH 210	00р насн 2100Q	Serial No. S.	/N 10060C003010					
Reference Value	PL 70/0	20	100	800				
Standard Lot No.	0161	0167	0168	0161				
1. Time 0759	10.1	19.7	103	801				
2. Time 1125	10.3	19.9	99.6	799				
3. Time								
4. Time								
Comments:								

SNL/NM Project Name: CW	<u> </u>		SNL/NM Project No.: 146422.10.11.03					
Calibrations done by: R Lync	***************************************							
		······································	1	e/14		**************************************		
Make & Model, YSI EXO	1			•				
YSI 6820 Sonde (S/N) with E	DO, Ec, pH, ORP, and	d temperature prob	es: 13C101167					
YSI 650 MDS (S/N): NA								
***************************************	**	pH C	alibration	100				
pH Calibrated to (std), 7,00			pH sloped to (sid): 10.00	ht 1/4 2-2+ A AAA 4	***************************************		
Reference value:		L00		7.00		0 00		
	Value	Temp	Value	Тепър	Value	Тепър		
1 Time: 0642	4.01	21,3	6.99	21.3	10-00	21,3		
2. Time 13.1.7	4:00	21.7	7.00	21.7	10.01	21.7		
3 Time:			_	•				
Standard lot go			3AE725		0.40057			
Expusion data	3AD782 4/15		5/15		3AD357 4/15			
		SC C	alibration					
Reference Value 1225 uS			Standard Lot N	vo. 3AE221		***		
	Value	Temp	Expiration Dat	.,	5/15			
1.Time: 0641	1227	21.3						
2. Time	1230	21.7						
3 Time:				3 3 4 4	11111			
4 Time;								
		ORP C	alibration.					
Reference Value:	220 mV		Standard Let No. 4AA010					
	Value	Temp	Expication Dat	et:	7/14			
1. Time: 0643	2201	21.3						
2. Times 1318	720.4	21.7						
3. Timę	Annua							
4. Time:		A Salarania A Sala						
	***************************************	DO C	alibration	***				
Calibration Value:	81% air satur	ation @ 5200 ft.		Aimaspheru	Pressure in Hg			
1. Tyme 0640	81.7		20	4.47				
2. Time 1315	81.9		20	1.49		*****		
3 Time								
4 Tiva-	***		-					

IMPORTANT NOTICE. A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name: CW	Project No.:	Project No.: 146422.10.11.03							
Calibration done by: R Lynch	Calibration done by: R Lynch			Date: 7/8/14					
-	Ti	URBIDIMETER	t						
Make & Model: HACH 210	00P HACH 2100Q	Scrial No. S	/N 10060C003010 ′						
Reference Value	714/14	20	100	800					
Standard Lot No.	0161	0167	0168	0161					
1. Time 0753	(0.2	19.9	ĮοϤ	800					
2. Time 1150	9.99	19.6	lol	795					
3. Time									
4. Time									
Comments:									

GROUNDWATER	SAMPLE COL	LECTION F	IELD EQUIP.	MENT CHEC	JK LQG - I	age 1 of 2			
SNL/NM Project Name: CWL			SNL/NM Proj	ect No.: 146422.	.10.11.03				
Calibrations done by R Lynch			Date: 7/9/14						
Make & Model: YSI EXO1			ı	7					
YSI 6820 Sonde (S/N) with DC	, Ec, pH, ORP, and	temperature prob	bes: 13C101167		···	_			
YSI 650 MDS (S/N): NA		-		····					
		рН С	alibration			•			
pH Calibrated to (std): 7.00		<u> </u>	pH sloped to (std): 10.00					
Reference value;	1 4	.00		7.00		0.00			
	Value	Temp	Value	Temp	Value	Temp			
1. Time: 0622	4.00	211	7.00	21.1	10.01	21.1			
2. Time. 1432	4.01	21.7	7.01	21.8	10.00	21.7			
3. Time:									
4 Time:			-						
Standard lot no.:	3AD782		3AE725		3AD357				
Expiration date:	4/15		5/15		4/15				
		SC C	alibration						
Reference Value: 1225 uS			Standard Lot 1	No.: 3AE221					
	Value	Temp	Expiration Date	5/15					
1. Time: 0621	1229	21.1			la la la la la la la la la la la la la l				
2. Time: [4]3	1231	21.8							
3. Time:									
4. Time:				N The state of the					
		ORP C	Calibration						
Reference Value:	220 mV		Standard Lot N	No 4AA010					
	Value	Temp	Expiration Dat	te	7/14				
1. Time: 0633 2. Time 1433	219.7	21.1							
2, Time 1433	220.4	21.8		100					
3. Time									
4. Time:									
		DO C	alibration						
Calibration Value:	81% air satura	tion @ 5200 ft.		Atmospheri	ic Pressure in Hg				
1. Time 0620	81.	6		24.46					
2. Time: 1430	81.8		7	24.50					
3. Time.									
4 Time				· 					

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name: CWL		Project No.:	Project No.: 145422.10.11.03						
Calibration done by: R Lynch	*			Date: 7/9/14					
	T	JRBIDIMETER		Additional and the second seco					
Make & Model: HACH 210		Scrial No. 8	/N 10060C003010						
Reference Value	25710	20	100	800					
Standard Lot No.	0161	0167	0168	0181					
1. Time 0730	10.3	19.6	08	795					
2. Time 1313	9.99	19.7	104	793					
3. Time	And the second s		VS. DOCUMENTO CONTRACTOR CONTRACT						
4. Time									
Comments:		•							
			h						

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG Page I of 2 SNL/NM Project No.: 146422,10,11.03 SNL/NM Project Name: CWL Calibrations done by: R Lynch Date: Make & Model: YSLEXO1 YSI 6820 Sonde (S/N) with DO, Ec, pH, GRP, and temperature probes: 13C101167 YS1 550 MDS (S/N): NA pH Calipration pH Calibrated to (std): 7.00 pH sloped to (std): 10.00 Reference value. 4,00 7.00 10.00 Value Temp Value Temp Value Temp 3.99 ,99 20.3 1. Time: 20.3 20.3 10.00 2 Time: 20.8 20.8 4.01 7-01 10.00 9.98 3 Time: 26.2 20.2 4.01 7,00 **ざの・**つ 6.99 20.2 4 Time. 4.02 9.99 Standard lot no : 3AE725 3AD782 3AD357 Expiration date: 4/15 5/15 4/15 SC Calibration 1225 uS Standard Lot No.: 3AE221 Reference Value Expiration Date: Value Temp 5/15 1. Time: 20.32 Time: 1229 <u> 20.8</u> 3 Time: 1225 0641 20.2 4. Time: 20.3 1030 1224 ORP Culibration 220 mV Standard Lot No. 4AA010 Ruference Value. Value Тетр Expiration Date. 7/14 20.3 219.8 1. Time: 20.8 2 Time: 219.6 20.0 3. Time: 06044 20.3 2201 1032 4. Time. DO Calibration 81% air saturation @ 5200 ft Atmospheric Pressure in Hg Calibration Value: 1. Time 2 Time: 3 Time. 1029 4, Time:

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page

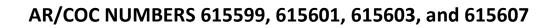
GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name: CV	VL.	Project No.:	Project No.: 146422.10.11.03				
Calibration done by: R Lynch	J	Date:	Date: 7/16/14 7/14/14				
		TURBIDIMETER					
Make & Model: HACH 21		ł	/N 10060C003010				
Reference Value	4.10-1		100	800			
Standard Lot No.	0161	0167	0168	0161			
. Time 0750	10.1	19.7	104	806			
2. Time 1340	9.99	20.1	99.9	798			
	- 0-	_					
8. Time 0805	9.97	19.6	(02	195			
3. Time 0805 3. Time 0917 Comments:	9.91	19.6	104 (02	795 789			
7. Time 0917				1			

Project Name: CWL-GWM	Monitoring Well ID # : CV	WL-BW5		Date: 07 / 07 / 14
The following equipment was	decontaminated at completio	on of sampling a	ctivities in accordance with FO	O P- 05-03
Pump and Tubing Bundle ID #: 1806-640	W	ater Level Indic	cator ID #: 210269	
Personnel Performing Decontamination: Robert Lynch Print Name: William Gibson Print Name: Initial:	Ro Pri	obert Lynch	ming Decontamination: Initialization Initialization	tial:
Pump: Excellent Tubin	Condition of Fing Bundle: Excellent	Equipment	Water Land Validation Go	and
rump: rump			_Water Level Indicator: Go	
	List of Decontamin	nation Materials		
			HNO ₃	
Distilled or Deonized (circle	one)	Grade:	Reagent	
Source: Culligan		UN #:	2031	
Lot Number: 062414	M	Sanufacturer:	AROC	
	.]	Lot Number:	A0316863	

Project Name: CWL-GWM	Monitoring Well ID # : CWL-MW9	Date: _7/8/14
The following equipment wa	s decontaminated at completion of sampling activities	es in accordance with FOP-05-03
Pump and Tubing Bundle ID #: 1806-640	Water Level Indicator I	ID#: <u>210269</u>
Personnel Performing Decontamination:	Personnel Performing I	Decontamination:
Robert Lynch Print Name: Initial:	Robert Lynch Print Name:	Initial
Alfred Santillanes Print Name: Initial:	Alfred Santillanes Print Name:	Initial:
	Condition of Equipment	
Pump: Excellent Tub	ing Bundle: Excellent Wate	er Level Indicator: Good
	List of Decontamination Materials	
Distilled or Deonized (circle	a ana)	HNO ₃
Distinct of Destrict (Circle	Grade: Reag	ent
Source: Culligan	UN#: 2031	
Lot Number: <u>062414</u>	Manufacturer: ARO	С

Project Name: CWL-GWM	Monitoring Well ID#: CWL-MW11		Date: 7/9/14
The following equipment wa	s decontaminated at completion of samplin	g activities in accordance with F	OP-05-03
Pump and Tubing Bundle ID #: 1806-640	Water Level I	idicator ID #; <u>210269</u>	
Personnel Performing Decontamination: William Gibson Print Name: Alfred Santillanes Print Name: Initial:	Personnel Per William Gibso Print Name: Alfred Santilla Print Name:	Īn	idal:
Pump: Excellent Tub	Condition of Equipment ing Bundle: Excellent	Water Level Indicator: Go	ood
	List of Decontamination Mater	72 HIII 72 HIII 1	
Distilled or Deonized (circle	e one)	HNO	
		e: Reagent	
Source: Culligan	UN	¥: <u>2031</u>	
Lot Number: 062414	Manufacture	r: AROC	
	Lot Numb	r: A0316863	


Project Name: CWL-GWM Moni	itoring Well ID # : CWL-MW10	Date: 7-11-13
The following equipment was decor	ntaminated at completion of sampling activities in a	ccordance with FOP-05-03
Pump and Tubing Bundle ID #: 1806-640	Water Level Indicator ID #:	210269
Personnel Performing Decontamination:	Personnel Performing Decon	tamination:
Robert Lynch 2L	Robert Lynch	PL
Print Name: Initial:	Print Name:	<u>144</u> Initial:
1.18	Marie Cit	2,128
William Gibson Print Name: Initial:	William Gibson Print Name:	T-id-1
Print Name: Inityal:	Print Name:	initial:
	Condition of Equipment	
Pump: Excellent Tubing Bu	ndle: Excellent Water Lev	vel Indicator: Good
	List of Decontamination Materials	
		HNO ₃
D1 /937 7 D 1 7 / 1 1 3	I	
Distilled or Deonized (circle one)	Grade: Reagent	·
Distilled or Deonized (circle one) Source: Culligan	Grade: Reagent UN #: 2031	·
		·
Source: Culligan	UN #: 2031	·

SUMMARY SHEET FOR JULY 2014 SAMPLES

Sample Summary for CWL GWM July 2014

					Associated			
	Sample		Sample		Equipment Blank	Associated Trip Blank	Associated Field Blank	
Sample ID	Date	ARCOC	Number	Sample Type	(ARCOC #/Sample #)	(ARCOC # / Sample #)	(ARCOC # / Sample #)	Comments
CWL GWM: Project	ct Task # 1	46422.10.1	11.03. Serv	vice Order # CF 32	27-14			
Environmental Sa	mples							
CWL-BW5	7-Jul-14	615599	096179	Environmental	n/a	615599 / 096180	615599 / 096178	
CWL-MW9	8-Jul-14	615601	096184	Environmental	615607 / 096199	615601 / 096186	615601 / 096183	
CWL-MW9	8-Jul-14	615601	096185	Duplicate	615607 / 096199	615601 / 096186	615601 / 096183	
CWL-MW10	11-Jul-14	615605	096195	Environmental	n/a	615605 / 096196	615605 / 096194	
CWL-MW11	9-Jul-14	615603	096190	Environmental	n/a	615603 / 096191	615603 / 096189	
CWL-EB1	7-Jul-14	615607	096199	Equipment Blank	n/a	615607 / 096200	n/a	Decon prior to CWL-MW9
CWL-FB1	7-Jul-14	615599	096178	Field Blank	n/a	615599 / 096180	n/a	at CWL-BW5
CWL-FB2	8-Jul-14	615601	096183	Field Blank	n/a	615601 / 096186	n/a	at CWL-MW9
CWL-FB3	9-Jul-14	615603	096189	Field Blank	n/a	615603 / 096191	n/a	at CWL-MW11
CWL-FB4	11-Jul-14	615605	096194	Field Blank	n/a	615605 / 096196	n/a	at CWL-MW10
Waste Characteriz	zation Sam	ples						
CWL-BW5	7-Jul-14	615600	096181	Waste	n/a	615600 / 096182	n/a	No data validation required
CWL-MW9	8-Jul-14	615602	096187	Waste	n/a	n/a	n/a	No data validation required
CWL-MW10	11-Jul-14	615606	096197	Waste	n/a	n/a	n/a	No data validation required
CWL-MW11	9-Jul-14	615604	096192	Waste	n/a	n/a	n/a	No data validation required

DATA VALIDATION REPORTS FOR ENVIRONMENTAL SAMPLES GROUNDWATER MONITORING JULY 2014

AR/COC: 615599, 615601, 615603, 615607

Page 1 of 1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
SW846 3005/6020 DOE-AL			
	096179-015/CWL-BW5	Nickel (7440-02-0)	J-, CK3
	096184-015/CWL-MW9	Nickel (7440-02-0)	J-, CK3
	096185-015/CWL-MW9	Nickel (7440-02-0)	J-, CK3
	096190-015/CWL-MW11	Nickel (7440-02-0)	J-, CK3

All other analyses met QC acceptance criteria; no further data should be qualified.

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date:

August 21, 2014

To:

File

From:

Mary Donivan

Subject:

Inorganic Data Review and Validation - SNL

Site: CWL-GWM

AR/COC: 615599, 615601, 615603 and 615607

SDG: 352131 Laboratory: GEL

Project/Task: 146422.10.11.03

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03 Rev 4.

Summary

Five samples were prepared and analyzed for Cr and Ni with approved procedures using method EPA 6020 (ICP-MS). Data were reported for all required analytes. Problems were identified with the data package that resulted in the qualification of data.

1. The Ca concentrations for all samples *except* 352131012 were comparable to or above the ICS levels for the ICP-MS analysis. The ICS A result for Ni was negative with an absolute value >2X the MDL. The associated sample results were detects at <50X the absolute value of the associated ICS A result and will be **qualified J-,CK3** due to a negative ICS A results.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were prepared and analyzed within the prescribed holding times and properly preserved.

ICP-MS Instrument Tune

The ICP-MS tune met QC acceptance criteria.

Calibration

All initial and continuing calibration criteria met QC acceptance criteria.

Reporting Limit Verification

All CRA/CRI recoveries associated with the samples met QC acceptance criteria.

It should be noted that the CRI was analyzed at the PQL and not at 2X the PQL for all target analytes.

Blanks

No target analytes were detected in the blanks.

ICP-MS Internal Standards

The ICP-MS internal standards met QC acceptance criteria.

Matrix Spike (MS)

The MS met all QC acceptance criteria.

Laboratory Replicate

The replicate met all QC acceptance criteria.

Laboratory Control Sample (LCS)

The LCS met all QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

ICP Interference Check Sample (ICS A and AB)

The results for the ICSA and ICSAB met acceptance criteria except as noted above in the Summary section.

ICP Serial Dilution

The serial dilutions met all QC acceptance criteria.

Other QC

An EB was submitted with ARCOC 615607, and it was associated with samples from 615601. A field duplicate pair was submitted with ARCOC 615601. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by: Monica Dymerski Level I Date: 09/22/14

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date:

August 21, 2014

To:

File

From:

Mary Donivan

Subject:

GC/MS Organic Data Review and Validation – SNL

Site: CWL-GWM

AR/COC: 615599, 615601, 615603 and 615607

SDG: 352125 Laboratory: GEL

Project/Task: 146422.10.11.03

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM SMO AOP 00-03 Rev 4.

Summary

Twelve samples were prepared and analyzed with accepted procedures for trichloroethylene using method EPA 8260B (VOCs). All compounds were successfully analyzed. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times

The samples were analyzed within the prescribed holding time and properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria.

Blanks

No target analytes were detected in the blanks except as follows. Trichloroethylene was detected at a concentration > the PQL in the FB, sample 352131014. The associated sample result was a non-detect and will not be qualified.

Surrogates

All surrogate recoveries met QC acceptance criteria.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD acceptance criteria were met.

Laboratory Control Sample (LCS)

All LCS acceptance criteria were met.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Other QC

Four TBs were submitted, one associated with each ARCOC. FBs were submitted with ARCOCs 615599, 615601 and 615603 and were associated with the samples in their respective ARCOCs. An EB was submitted with ARCOC 615607, and it was associated with samples from 615601. A field duplicate pair was submitted with ARCOC 615601. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by: Monica Dymerski Level I Date: 09/22/14

Data Validation Summary Worksheet

AR/COC #: 615599, 615601, 61560	03 and 605607	Site/Project: CWL-GWM				Validation Date: _08/21/2014			
SDG #: 352131	Laboratory: GEL Laboratories, LLC						Validator:	Mary Donivar	1
Matrix: Aqueous	# of Samples:	17 CVR	present:	Yes		Aı	nalysis Type:	X Organic X M	etals
AR/COC(s) present: Yes	Sa	mple Contair	ner Integrity	:	<u>OK</u>			Rad G	en Chem
		Requ	ested Ana	lyses Not I	Reported				
Sample Number									
None									
			1						
				1	1				
		Hold	Time/Pre	servation	Outliers				
Sample Number	Laboratory ID	Hold Analys		servation	Outliers Coll. Date	Prep. Date	Anal. Date	Anal. within 2X HT	Anal. beyond 2X HT
Sample Number None	Laboratory ID	1				Prep. Date	Anal. Date		
-	Laboratory ID	1				Prep. Date	Anal. Date		
-	Laboratory ID	1				Prep. Date	Anal. Date		
-	Laboratory ID	1				Prep. Date	Anal. Date		
-	Laboratory ID	1				Prep. Date	Anal. Date		
-		1				Prep. Date	Anal. Date		
None		1				Prep. Date	Anal. Date		
None						Prep. Date	Anal. Date		2X HT

Organic Worksheet (GC/MS)

AR/COC #: 615599, 615601, 615603 and 615607

SDG #:352131

Laboratory Sample IDs: 352131001, -002, -004, -005, -006, -008, -010, -011, -013, -014, -015 and -017

Method/Batch #s: 1403528

Tuning (pass/fail): pass

TICs Required? (yes/no) no

			Calibration			5X				MS/						
Ana (outli			Int.	RF	RSD/ R ²	CCV (ICV) %D	Method Blank	(10X Blan	%R	MS %R	MSD %R	MSD RPD	-011	FB -014		
trichloroethylene			NA	✓	√	✓	✓	NA	✓	✓	✓	✓	V	3.3		
															\rightarrow	
	_															
											-					
										<u> </u>					-+	
									_	<u> </u>					-+	
					S	urrogate	Recovery	Outlie	rs						-	
Sample ID																
None																
							CO 41'									
							S Outliers									
Sample ID	Area	RT	Arc	ea	RT	Are	a l	RT	Area	RT		Area	RT	Area	F	RT
None																
C. A. LIT. OV. IO																

Comments: HTs OK, ICAL VOA6.I 07/14/14

MS/MSD performed on sample -002

Sample analysis for trichloroethylene only

Matrix: Aqueous

Inorganic Metals Worksheet

AR/COC #: 615599, 615601, 615603 and 615607 SDG #: 352131 Matrix: Aqueous

Laboratory Sample IDs: 35213103, -007, -009, -012 and -016

Method/Batch #s: 3005A/6020 (ICP-MS): 1402927(prep)/1402928

ICPMS Mass Cal (pass/fail) pass

ICPMS Resolution (pass/fail) pass

Analyte (outliers)				bration			Method Blank	5X Blank or	LCS %R	MS %R	Lab Rep. RPD	Serial Dil. %D	ICS AB	ICS A ±	CRA/ CRI %R	EB -012		
` ′	Int.	R ²	ICV	CCV	ICB	CCB		5X MDL					%R					
Ni	✓	✓	~	✓	~	✓	✓	NA	✓	✓	✓	✓	✓	-1.35	✓	✓		
						-												
				1														
																	\perp	
																	\perp	
																	\perp	$\perp \! \! \! \! \! \! \! \! \perp \! \! \! \! \! \! \! \! \! \!$
																	\perp	$\perp \perp \perp$
																	\perp	44
																	\perp	++
																	\perp	++

	IS Outliers	60-125%		IS Outliers 80-120%							
Sample ID	%Recovery	%Recovery	%Recovery	CCV/CCB ID	%Recovery	%Recovery	%Recovery				
None				None							

Comments: HTs OK. Matrix QC performed on -003

SMO 2012-ARCOC (4-2012)

Internal Lab														_	Page	_1_of_1_
Batch No. N	1A					SMO Use						10 /)	AR/COC	61	5599
Project Name	e!	CWL-GW	M	Date Sample	s Shipped:	7	17/14		SMO A	uthorization:	C21.	14. Px	~	Waste Characterization		
Project/Task	Manager:	Tim Jack	son	Carrier/Wayb	ill No.	22	0635		SMO C	ontact Phone	e:		Smo	RMMA		
Project/Task	Number:	146422/1	0.11.03	Lab Contact:		Edie Kent		8171	1			5-844-3199	Released by COC No.			
Service Orde		CF 025-1		Lab Destinati	ion:	GEL			Send Re	eport to SMC			1 -	J.	4º Celsius	
		327	em	Contract No.:		PO 13038	73		1			5-284-2553	Bill to:Sandia National Laboratorio			
Tech Area:			7/8/19	CONTROCT TO.		1 0 10000			7	111011010	augiooc	2012000	P.O. Box 5800, MS-0154	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	
Building:		Room:	1 1	Operationa	al Sito:								Albuquerque, NM 87185-0154	ز	352 131	
Duilding.		IXOOIII.		Toperations		Date/Time Sample		Comple		ontainer	D	Collection	Sample	Parameter & Metho		Lab
Sample No.	Fraction	Saı	mple Location D	etail	Depth (ft)		ected	Matrix	Туре	Volume	Preserv- ative	Method	Type	Requested	J	Sample ID
096178	-001	CWL-FB	1		N/A	, 7/7/14	11:15	DIW	G	3x40ml	HCL	G	FB	TCE (SW846-8260B)		001
096179	-001	CWL-BW	15		521	. 7/7/14	11:15	GW	G	3x40ml	HCL	G	SA	TCE (SW846-8260B)		002
096179	-015	CWL-BW	15		521	• 7/7/14	11:16	GW	Р	500 mL	HNO3	G	SA	Chromium Nickel (SW846-69	920)	003
096180	-001	CWL-TB	1		N/A	· 7/7/14	11:15	DIW	G	3x40ml	HCL	G	ТВ	TCE (SW846-8260B)		004
Last Chain:		Yes			Sample	Tracking		SMC) Use	Special Ins	structions	QC Requir	ements:		Cond	ditions on
Validation I		✓ Yes			Date Ent	_			Use Special Instructions/QC Requirements: EDD Yes					No		eceipt
Backgroun		Yes			Entered					Turnaroun	d Time	7 Da	v*	15 Day*		, , , , , , , , , , , , , , , , , , ,
Confirmato		Yes			QC inits.					Negotiated						
Sample	Na	ame	Signatu	ire ,	Init.	Compan	y/Organiza	tion/Phon	e/Cell	Sample Di	sposal	Return	to Client			
Team	Robert Ly	nch	Kerty	ich	RL	SNL/4142/5	05-844-401	13/505-25	0-7090	Return Sai	mples By:					
Members	Alfred Sa	ntillanes	1444257	The_	100	SNL/4142/5	05-844-513	30/505-22	8-0710	Comments	3:	Send report to	Tim Jackson	1/4142/MS 0729/284-2547		
	William G	ibson	Willen Va	8.11	1/1/2	SNL/4142/5				1						
			//		00					1						-1
										1					la	ıb Use
1.Relinquished by Alberta Org. 4/9					 Date	7714	Time 1	135	3 Relino	uished by			Org.	Date	Time	
Received b		19		Org. 4142				136	3. Rece				Org.	Date	Time	
	- 77	mg g					Time	1200		uished by			Org.	Date	Time	
2. Retinquished by Org. 4/14					_											
2. Received b		th CNO	quikad for		Date	7-3-14	Time ₍	0815	4. Rece	ived by			Org.	Date	Time	
Prior Contiff	nation wi	III SIVIO re	quired for 7 and	∷io day IA I	l											

Internal Lab															Page _1_ of _1_	
Batch No.	NA					SMO Use	,					10		AR/COC	615601	
Project Name	e:	CWL-GWN	M	Date Sample	s Shipped:	7/8	114		SMO A	uthorization:	5)/	W41	in	Waste Characterization		
Project/Task	Manager:	Tim Jacks	son	Carrier/Wayb			0818		SMO Co	ontact Phone	9:	6	Smo	RMMA		
Project/Task	Number:	146422/1	0.11.03	Lab Contact:			/803-556-8	3171	1	Lorraine H	Herrera/50	5-844-3199		Released by COC No.		
Service Orde	er:	CF 327-1	4	Lab Destinati	on:	GEL		- 11 48	Send Re	eport to SMC	D:		1 _	☑ 4º Celsius		
				Contract No.:		PO 1303	373		1	Rita Kava	naugh/50	5-284-2553	Bill to:Sandia National Laboratories	s (Accounts Payable),		
Tech Area:													P.O. Box 5800, MS-0154	10/14 352/31		
Building:		Room:		Operationa	al Site:									Albuquerque, NM 87185-0154	325131	
					Depth			Sample	Co	ontainer	ontainer Preserv-		Sample	Parameter & Method	Lab	
Sample No.	Fraction	Sar	mple Location D	etail	(ft)			Matrix			ative	Collection Method	Туре	Requested	Sample ID	
096183	-001	CWL-FB	2		N/A	7/8/14	11:46	DIW	G	3x40ml	HCL	G	FB	TCE (SW846-8260B)	005	
096184	-001	CWL-MW	/9		516	7/8/14	11:46	GW	G	3x40ml	HCL	G	SA	TCE (SW846-8260B)	006	
096184	-015	CWL-MW	/9		516	• 7/8/14	11:48	GW	Р	500 ml	HNO3	G	SA	Chromium Nickel (SW846-602	20) 007	
096185	-001	CWL-MW	/9		516	° 7/8/14	11:46	GW	G	3x40ml	HCL	G	DU	TCE (SW846-8260B)	008	
096185	-015	CWL-MW	/9		516	7/8/14	11:48	GW	Р	500 ml	HNO3	G	DU	Chromium Nickel (SW846-602	20) 009	
096186	-001	CWL-TB	4		N/A	7/8/14	11:46	DIW	G	3x40ml	HCL	G	ТВ	TCE (SW846-8260B)	010	
Last Chain		Yes			1	Tracking		SMC) Use	1 '	structions	/QC Requir		Conditions on		
Validation		✓ Yes			Date Ent				EDD Yes					No	Receipt	
Backgroun		Yes			Entered					Turnaroun		7 Da	<u>y*</u>	15 Day* 30 Day		
Confirmato	ry:	Yes			QC inits.					Negotiated						
Sample		ame	Signatu	ıre	Init.	Compa	ny/Organiza	tion/Phon	e/Cell	Sample Di	sposal	☐ Return	to Client	☑ Disposal by Lab		
Team	Robert Ly	/nch	Jol Ju	ch	RL	SNL/4142/	505-844-401	13/505-25	0-7090	Return Sa	mples By:					
Members	Alfred Sa	ntillanes	Hypel Soit	Ell_	ast	SNL/4142/	505-844-513	30/505-22	8-0710	Comments	s :	Send report to	Tim Jackson	n/4142/MS 0729/284-2547		
	William G	Sibson	Willen	UV	WYD	SNL/4142/	505-284-330	07/505-23	9-7367							
	-/															
1 .]					Lab Use	
1.Relinquishe	ed by	305	atilla	Org. 414	2 Date	7/8/14	Time (210	3.Relino	uished by			Org.	Date	Time	
1. Received b	* Ort	Elm	- Sno	Org. 4/4	2 Date	7/8/1	Time	210	3. Rece	ived by			Org.	Date	Time	
				Org. 414	2 Date							Org.	Date	Time		
2. Received by Org. Cert						7-91	/ Time (750	4. Rece	ived by			Org.	Date	Time	
		th SMO to	quired for 7 and							-						

SMO 2012-ARCOC (4-2012)

Internal Lab																Page	_1_ of _1_
Batch No. N	A					SMO Use	,					100			AR/COC	615	5603
Project Name	e:	CWL-GWN	1	Date Sample	s Shipped:	7/1	0/14		SMO A	uthorization:	and !	9. /m		Wast	e Characterization		
Project/Task	Manager:	Tim Jacks	son	Carrier/Wayb	ill No.	22	0954		змо с	ontact Phone	e:		Sme	RMM.	A		
Project/Task	Number:	146422/1	0.11.03	Lab Contact:		Edie Kent/8	03-556-8	3171]	Lorraine I	Herrera/50	5-844-3199	Relea	sed by COC No.			
Service Orde	er:	CF 327-14	4	Lab Destinati	on:	GEL			Send R	eport to SMO) :		1			1º Celsius	
				Contract No.:		PO 130387	3			Rita Kava	anaugh/505	-284-2553		Bill to:Sandia	its Payable),		
Tech Area:														P.O. Box 5800, MS-0154			
Building:		Room:		Operation	al Site:									Albuquerque,	NM 87185-0154	3	52131
					Depth	Date/T	ime	Sample	C	ontainer	Preserv-	/- Collection	Sample	Par	ameter & Method		Lab
Sample No.	Fraction	Sar	mple Location D	etail	(ft)	Collec	ted	Matrix	Туре	Volume	ative	Method	Type	Requested			Sample ID
096189	-001	CWL-FB	3		N/A	۰ 7/9/14	13:07	DIW	G	3x40ml	HCL	G	FB	TCE (SW8	46-8260)		014
096190	-001	CWL-MW	' 11		513	~ 7/9/14	13:07	GW	G	3x40ml	HCL	G	SA	TCE (SW84	46-8260)		015
096190	-015	CWL-MW11			513 515 .	7/9/14	13:09 1	GW	Р	500 mL	HNO3	G	SA	Chromium	Nickel (SW846-602	20)	016
096191	-001	CWL-TB	 3		N/A	` 7/9/14	13:07	DIW	G	3x40ml	HCL	G	ТВ	TCE (SW8	46-8260)		017
														•			
																,	
<u> </u>																	
											-						
								-									
Last Chain		Yes			'	Tracking		SMC	O Use Special Instructions/QC Requirements					1.	1		itions on
Validation	<u> </u>	✓ Yes			Date Ent					EDD		✓ Yes		No		Re	eceipt
Backgroun		Yes			Entered					Turnarour	nd Time	7 Da	у*	15 Day*	✓ 30 Day		
Confirmato	ry:	☐ Yes			QC inits.	:				Negotiated	TAT b						
Sample		ame	Signati		Init.	Company	/Organiza	tion/Phon	e/Cell	Sample Di	sposal	Retur	n to Client		Disposal by Lab		
Team	Robert Ly	ynch		ich	RL	SNL/4142/50	5-844-40	13/505-25	0-7090	Return Sa	mples By:		(20)				
Members	Alfred Sa	ntillanes	HALSU	tella		SNL/4142/50	5-844-51	30/505-22	8-0710	Comments	s:	Send report to	Tim Jacksor	n/4142/MS 0729/	284-2547		
	William C	Sibson	Willest	Sell	Wild	SNL/4142/50	5-284-33	07/505-23	9-7367								
0 8 7					0												
1										1						La	b Use
1.Relinquishe		146	pilile.	Org. 414	2 Date	7914	Time	1335	3.Relino	quished by			Org.		Date	Time	
1. Received b		94 9 1	is some	Org. 414			Time /	1335	3. Rece	ived by			Org.			Time	
2. Relinquished by 10 leg for Sour Org. 114													Org. Date				
2. Received b	y V	Mik	-la!	Org. Ce	Date	771-14	Time	0725	4. Rece	ived by			Org.		Date	Time	
					_	. 1											

^{*}Prior confirmation with SMO required for 7 and 15 day TAT

Internal Lab																Page <u>1</u> of	1
Batch No. N						SMO Use	į.					101			AR/COC	615607	
Project Name		CWL-GWN		Date Sample	s Shipped:	7/8	14		SMO Au	thorization:	De	7 /	-	Waste	Characterization	-	
Project/Task		Tim Jacks		Carrier/Wayb	ill No.	220	818		SMO Co	ntact Phone	: /		Sur	RMMA	\		
Project/Task	Number:	146422/10		Lab Contact:		Edie Kent/	303-556-8	3171		Lorraine H	lerrera/50	5-844-3199		Releas	sed by COC No.		
Service Orde	r:	CF 025-14		Lab Destinati	on:	GEL			Send Re	port to SMC):					✓ 4° Cels	sius
	del	327	-14	Contract No.:		PO 130387	73			Rita Kava	naugh/505	5-284-2553	Bill to:Sandia	National Laboratories	(Accounts Payal	ble),	
Tech Area:	7814		•						· markaranag-wood 20 / 2000					P.O. Box 5800), MS-0154		
Building:		Room:		Operationa	al Site:									Albuquerque,	NM 87185-0154	352	/3/
					Depth	Date/Time		Sample	Co	ntainer	Preserv-	Collection	Sample	Para	meter & Method	Lal	b
Sample No.	Fraction	San	nple Location D	etail	(ft)			Matrix	Type	Volume	ative	Method	Туре		Requested	Sampl	
200400	004	OMI ED	4			7/7/4	40.00						SA SA	1 1		01	
096199	-001	CWL-EB	1		N/A	7/7/14	13:23	DIW	G	3x40ml	HCL	G		TCE (SW84	6-8260B)		
096199	-015	CWL-EB	1		N/A	7/7/14	13:24	DIW	Р	500 mL	HNO3	G	SA	Chromium N	Nickel (SW846-692	20) 01.	2
096200	-001	CWL-TB 3	3		N/A	7/7/14	13:23	DIW	G	3x40ml	HCL	G	ТВ	TCE (SW84	6-8260B)	01.	3
						1											
								-									\dashv
								_	,								
																	\dashv
														<u> </u>			_
Last Chain:		Yes			Sample	Tracking		SMO	Use	Special Ins	structions	/QC Requir	ements:			Conditions o	n
Validation I	Req'd:	✓ Yes			Date Ent	ered:			2	EDD		✓ Yes		No		Receipt	
Backgroun	d:	Yes			Entered	by:				Turnaroun	d Time	7 Da					
Confirmato	ry:	Yes			QC inits.	:				Negotiated	TAT						
Sample	Na	ame	Signatu	ire	Init.	Compan	y/Organiza	tion/Phone	e/Cell	Sample Dis	sposal	Return	to Client	✓	Disposal by Lab		
	Robert Ly		colf gn	ch	22	SNL/4142/5				Return Sar	nples By:						
Members	Alfred Sa	ntillanes	H41-159	till	SS	SNL/4142/5	05-844-513	30/505-22	8-0710	Comments	: :	Send report to	Tim Jacksor	/4142/MS 0729/2	284-2547		
	William G	Sibson	Willien Vo	Till	WYA	SNL/4142/5	05-284-330	07/505-23	9-7367								
	To an and a second seco				0.1												
İ	1									Ī						Lab Use	
1. Relinquished by Hill Saull Org. 4/14						7/7//	Z/Time /	3:43	3.Reling	uished by			Org.		Date	Time	
1. Received b	y Sy	real	unas	Org.4142	? Date	2/17/14	Time (3 43	3. Recei	ved by			Org.			Time	
2. Relinquished by Dong 1 1 1 Sw Org. 41 9					7 Date				4.Relinquished by Org.					Date Time		Time	
2. Received b	y	Thh	- tour	Org. Cel	Date	769-14	Time C	2750	4. Recei	ved by			Org.		Date	Time	
		ith SMO red	quired for 7 and	15 day TAT		/											

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date:

August 26, 2014

To:

File

From:

Mary Donivan

Subject:

Inorganic Data Review and Validation – SNL

Site: CWL-GWM AR/COC: 615605 SDG: 352883 Laboratory: GEL

Project/Task: 146422.10.11.03

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03 Rev 4.

Summary

One sample was prepared and analyzed for Cr and Ni with approved procedures using method EPA 6020 (ICP-MS). Data were reported for all required analytes. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The sample was prepared and analyzed within the prescribed holding times and properly preserved.

ICP-MS Instrument Tune

The ICP-MS tune met QC acceptance criteria.

Calibration

All initial and continuing calibration criteria met QC acceptance criteria.

Reporting Limit Verification

All CRA/CRI recoveries associated with the sample met QC acceptance criteria.

It should be noted that the CRI was analyzed at the PQL and not at 2X the PQL for all target analytes.

Blanks

No target analytes were detected in the blanks.

ICP-MS Internal Standards

The ICP-MS internal standards met QC acceptance criteria.

Matrix Spike (MS)

The MS met all QC acceptance criteria.

Laboratory Replicate

The replicate met all QC acceptance criteria.

Laboratory Control Sample (LCS)

The LCS met all QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. The sample was not diluted.

ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were not evaluated because the sample concentrations of Ca, Mg, Al and Fe were < that in the ICS solution.

ICP Serial Dilution

The serial dilutions met all QC acceptance criteria.

Other QC

No other specific issues that affect data quality were identified.

Reviewed by: Monica Dymerski Level I Date: 08/27/14

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date:

August 25, 2014

To:

File

From:

Mary Donivan

Subject:

GC/MS Organic Data Review and Validation – SNL

Site: CWL-GWM AR/COC: 615605 SDG: 352883 Laboratory: GEL

Project/Task: 146422.10.11.03

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM SMO AOP 00-03 Rev 4.

Summary

Three samples were prepared and analyzed with accepted procedures for trichloroethylene using method EPA 8260B (VOCs). All compounds were successfully analyzed. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times

The samples were analyzed within the prescribed holding time and properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria.

Blanks

No target analytes were detected in the blanks.

Surrogates

All surrogate recoveries met QC acceptance criteria.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD acceptance criteria were met. The parent sample for the MS/MSD was an SNL sample from another SDG. No sample data will be qualified as a result.

Laboratory Control Sample (LCS)

All LCS acceptance criteria were met.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Other QC

One FB and one TB were submitted, both associated with the sample in this ARCOC.

No other specific issues that affect data quality were identified.

Reviewed by: Monica Dymerski Level I Date: 08/27/14

Sample Findings Summary

AR/COC: 615605 Page 1 of 1

Analytical Method Sample ID Analyte Name (CAS#) Qualifier, RC

All other analyses met QC acceptance criteria; no further data should be qualified.

Data Validation Summary Worksheet

AR/COC #: 615605		Site/Project	: CWL-G	WM		Validation Date: _08/25/2014				
SDG #: 352883	Laboratory: GEL Laboratories, LLC						Validator:	Mary Doniv	an	
Matrix: Aqueous	# of Samples: 4 CVR present:Yes					Α	nalysis Type:	X Organic X M	1etals	
AR/COC(s) present: <u>Yes</u>	Sa	Sample Container Integrity: OK				7-12-1-2		Rad G	en Chem	
		Requ	iested Ana	lyses Not	Reported					
Sample Number	Laboratory ID	Laboratory ID organic genchem metals rad					Com	ments		
None			1							
		Holo	d Time/Pre	eservation	Outliers					
Sample Number	Laboratory ID	Analys	eie .	Pres.	Coll. Date	Prep. Date	Anal. Date	Anal. within	Anal. beyond	
Sample Number	Laboratory 1D	Analys	515	1 163.	Con. Date	Trep. Date	Anai. Date	2X HT	2X HT	
None										
Comments: Samples collected 07/11/2	014									
									Revised 7/2007	
					Validate	d Bv:	1 20			

Organic Worksheet (GC/MS)

AR/COC #: 615605 SDG #:352883 Matrix: Aqueous

Laboratory Sample IDs: 352883001, -002 and -004

Method/Batch #s: 1406391 Tuning (pass/fail): pass TICs Required? (yes/no) no

		Calib	ration			5X				MS/				
Analyte (outliers)	Int.	RF	RSD/ R ²	CCV (ICV) %D	Method Blank	(10X) Blank	LCS %R	MS %R	MSD %R	MSD RPD	-001	TB -004		
None														
			-			-								
			-								<u> </u>			
				Surrogate	Recovery	Outliers								
Sample ID				T										
None				-					-			-		
None				+										
				1	S Outliers									
Sample ID Area R	Γ Αι	rea	RT	Are	a F	RT	Area	RT		Area	RT	Ar	ea	RT
None														

Comments: HTs OK, ICAL VOAA.I 07/17/14

MS/MSD performed on SNL sample from another SDG

Sample analysis for trichloroethylene only

Inorganic Metals Worksheet

AR/COC #: 615605 SDG #: 352131 Matrix: Aqueous

Laboratory Sample IDs: 35213103, -007, -009, -012 and -016

Method/Batch #s: 3005A/6020 (ICP-MS): 1402927(prep)/1402928

ICPMS Mass Cal (pass/fail) pass ICPMS Resolution (pass/fail) pass

Analyte			Cali	bration	1		Method Blank	5X Blank or	LCS %R	MS %R	Lab Rep. RPD	Serial Dil. %D	ICS AB	ICS A ±	CRA/ CRI	EB -012		
(outliers)	Int.	R ²	ICV	CCV	ICB	ССВ		5X MDL					%R		%R			
Ni	✓	✓	√	✓	✓ -	✓	✓	NA	√	√	√	√	✓	-1.35	✓	~		
																		\perp
																		$\perp \!\!\! \perp$
																		\perp
																		\perp
																		\perp
																		$\perp \! \! \perp$
																		$\perp \! \! \perp$
																		$\perp \! \! \perp$
																		$\perp \! \! \perp$
																	\perp	$\perp \perp$
																	\perp	\perp

	IS Outliers	60-125%			IS Outliers	80-120%	
Sample ID	%Recovery	%Recovery	%Recovery	CCV/CCB ID	%Recovery	%Recovery	%Recovery
None				None			

Comments: HTs OK. Matrix QC performed on -003

SMO 2012-ARCOC (4-2012)

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

Internal Lab															Page	<u>1</u> of <u>1</u>
Batch No.						SMO Use	1					101	•	AR/COC	61	5605
Project Name	e:	CWL-GWN	1	Date Sample	s Shipped:	7/1	6/14		SMO A	uthorization:	QN	Tole	~	Waste Characterization		
Project/Task	Manager:	Tim Jacks	son	Carrier/Wayb	ill No.	221			SMO C	ontact Phone	:		mo	RMMA		
Project/Task	Number:	146422/10	0.11.03	Lab Contact:		Edie Kent/	803-556-8	3171	1	Lorraine F	Herrera/50	5-844-3199		Released by COC No.		
Service Orde	er:	CF 327-14	4	Lab Destinati	on:	GEL			Send R	eport to SMC):			1	✓	4º Celsius
				Contract No.:		PO 130387	73		1	Rita Kava	naugh/505	5-284-2553		Bill to: Sandia National Laboratorio	es (Accour	nts Payable),
Tech Area:														P.O. Box 5800, MS-0154		
Building:		Room:		Operationa	al Site:									Albuguerque, NM 87185-0154		352883
					Depth	Date/	Time	Sample	Co	ontainer	Preserv-	Collection	Sample			Lab
Sample No.	Fraction	San	nple Location D	etail	(ft)	Colle		Matrix	Туре	Volume	ative	Method	Type	Requested		Sample ID
<u> </u>	*															001
096194	-001	CWL-FB 4	4		N/A	7/11/14	9:09	DIW	G	3x40ml	HCL	G	FB	TCE (SW846-8260)		00/
096195	-001	CWL-MW	/10		515	• 7/11/14	9:09	GW	G	3x40ml	HCL	G	SA	TCE (SW846-8260)		002
096195	-015	CWL-MW	10		515	7/11/14	9:11	GW	Р	500 mL	HNO3	G	SA	Chromium Nickel (SW846-6	020)	003
096196	-001	CWL-TB 8	3		N/A	7/11/14	9:09	DIW	G	3x40ml	HCL	G	ТВ	TCE (SW846-8260)		004
																\vdash
Last Chain:	:	✓ Yes	*		Sample	Tracking		SMC) Use	Special Ins	structions	/QC Requi	rements:		Conc	ditions on
Validation I	Reg'd:	✓ Yes			Date En	tered:				EDD		✓ Yes		No	R	eceipt
Backgroun		Yes			Entered	by:				Turnaroun	d Time	7 Da	V*	15 Day *		
Confirmato	ry:	Yes			QC inits	.:				Negotiated	I TAT					
Sample	N:	ame	Signatu		Init.	Compan	y/Organiza	tion/Phon	e/Cell	Sample Dis	sposal	☐ Retur	n to Client	Disposal by Lab		
Team	Robert Ly	ynch	4/191	rch	20	SNL/4142/5	05-844-401	13/505-25	0-7090	Return Sar	nples By:					
Members	Alfred Sa	ntillanes	Albertar	all	at	SNL/4142/5	05-844-513	30/505-22	8-0710	Comments	s:	Send report to	Tim Jacksor	n/4142/ M S 0729/284-2547		
	William C	Sibson	Tolithe Va	delos	2002	SNL/4142/5	05-284-330	07/505-23	9-7367	1						
				1	0					1						4
										1					La	ab Use
1.Relinquishe	ed by	Uhace	5-7-00	Org. 4(4)	2 Date	7/16/14	Time)	009	3.Relino	uished by			Org.	Date	Time	
1. Received b	-	89. P.		Org. 414					3. Rece				Org.		Time	
2.Relinquishe	- 11)on who	, , ,	Org. 4.4		7/18/14	Time /			uished by			Org.		Time	
2. Received b	- 10	W/	The same	Org. Cel		7-17-14	/ _		4. Rece				Org		Time	
	-	ith SMO red	quired for 7 and			,,,,,,		7,50		,			2.9			

CONTRACT VERIFICATION REVIEW FORMS GROUNDWATER MONITORING JULY 2014

Note: The review forms in this section include AR/COC numbers for environmental samples and additional AR/COC numbers for waste characterization samples.

AR/COC Number	Sample Type
615599	Environmental*
615600	Waste
615601	Environmental*
615602	Waste
615603	Environmental*
615604	Waste
615605	Environmental*
615606	Waste
615607	Environmental*

^{*} These AR/COC forms are provided in the Data Validation Section of this Annex.

Contract Verification Review (CVR)

Project Leader	Jackson	Project Name	CWL GWM	Project/Task N	o. 146422_10.11.03
ARCOC No.	615599, 615600, 615601, 615602, 615603, 615604, 615607	Analytical Lab	GEL	SDG No.	352125

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line		Comp	olete?	
No.	ltem	Yes	No	If no, explain
1.1	All items on ARCOC complete - data entry clerk initialed and dated	Х		
1.2	Container type(s) correct for analyses requested	Х		
1.3	Sample volume adequate for # and types of analyses requested	Х		
1.4	Preservative correct for analyses requested	Х		
1.5	Custody records continuous and complete	Х		
1.6	Lab sample number(s) provided and SNL sample number(s) cross	Х		
	referenced and correct			
1.7	Date samples received	X		
1.8	Condition upon receipt information provided	Х		

2.0 Analytical Laboratory Report

Line		Com	olete?	
No.	ltem	Yes	No	If no, explain
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	Х		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	N/A		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

Contract Verification Review (Continued)

3.0 Data Quality Evaluation

Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1 Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2 Quantitation limit met for all samples	Х	۸	
3.3 Accuracy a) Laboratory control sample accuracy reported and met for all samples	Х		
b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Х		
c) Matrix spike recovery data reported and met	Х		
Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	X		
b) Matrix spike duplicate RPD data reported and met for all organic samples	Х		
Blank data a) Method or reagent blank data reported and met for all samples		Х	Calcium detected in Metals Method Blank (1203126289)
b) Sampling blank (e.g., field, trip, and equipment) data reported and met		Х	Detected in FB3: Trichloroethylene (096189-001)
3.6 Contractual qualifiers provided: "J"- estimated quantity; "B"- analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	Х		
3.7 Narrative addresses planchet flaming for gross alpha/beta	N/A		
3.8 Narrative included, correct, and complete	Х		
3.9 Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151	N/A		

Contract Verification Review (Continued)

4.0 Calibration and Validation Documentation

Item	Yes	No	Comments
4.1 GC/MS (8260 and 8270)			
a) 12-hour tune check provided	X		
b) Initial calibration provided	Х		
c) Continuing calibration provided	X		
d) Internal standard performance data provided	X		
e) Instrument run logs provided	X		
4.2 GC/HPLC (8330, 8082, 9070A, and 8010)			
a) Initial calibration provided	N/A		
b) Continuing calibration provided	N/A		
c) Instrument run logs provided	N/A		
4.3 HRGC/HRMS (1668)	N/A		
a) 12-hour tune check provided			
b) Initial calibration provided	N/A		
c) Continuing calibration provided	N/A		
d) Internal standard performance data provided	N/A		
e) Labeled compound recovery data provided	N/A		

SMO-2012-CVR (11-2013)

Contract Verification Review (Continued)

f) RRTs for samples and standards provided	N/A	
g) Ion abundance ratios for samples and standards provided	N/A	
h) Instrument run logs provided	N/A	
4.4 LC/MS/MS (6850)	N/A	
a) Initial calibration provided		
b) Continuing calibration provided	N/A	
c) CRI provided	N/A	
d) Internal standard performance data provided	N/A	
e) Chlorine isotope ratios provided (perchlorate only)	N/A	
f) ICS provided (perchlorate only)	N/A	
4.5 Inorganics (metals)		
a) Initial calibration provided	X	
b) Continuing calibration provided	X	
c) ICP interference check sample data provided	Х	
d) ICP serial dilution provided	X	
e) Instrument run logs provided	X	
4.6 Radiochemistry and General Chemistry	X	
a) Instrument run logs provided		

Contract Verification Review (Concluded)

5.0 Data Anomaly Report

Item	Yes	No	Comments
5.1 DAR completed for monitoring and surveillance sample data	N/A		
5.2 Problems or outliers noted		Х	
5.3 Verification or reanalysis requested from lab		Х	

6.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted.

Sample/Fraction No.	Analysis		Problems/Comments/Resolutions
Were deficiencies unresolved	d? θ Yes x No		
Based on the review, this dat	a package is complete.	θ)	res x No
			and date correction request was submitted: _09/15/2014_
Reviewed by:		Date: _	08/20/2014
Were resolutions adequate a	nd data package complete?	θYes	θ Νο
Closed by:		Date: _	09/18/2014

Date:	08/25/2	2014			
To:		Edie Kent / Jannie S	haw-Busby	From:	Lorraine Herrera
Company:	3	GEL		Org:	4142
Phone:	_	(843) 556-8171		Phone:	(505) 844-3199
Fax:	_	(843) 766-1178		Fax:	(505) 844-3128
			Correct	ion Request	
	615599 625607	9 – 615604,	SDG: 3521	125	Tracking No: 18030

For Metals batch 1402928, the run log is incorrect.

The LCS was analyzed and reported on 8/11/14 @ 20:12:50, but it is ZZZ'd out on the runlog. The sample ID for the LCS is 1203126290.

A corrected runlog is requested.

Thank you, Lorraine

Sandia National Laboratories
Sample Management Office
P.O. Box 5800
Albuquerque, New Mexico 87185-1331

Contract Verification Review (CVR)

ARCOC No. 615605, 61	15606 Analytical Lab	GEL	SDG No.	352882

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line		Comp	olete?	
No.	ltem	Yes	No	If no, explain
1.1	All items on ARCOC complete - data entry clerk initialed and dated	X		
1.2	Container type(s) correct for analyses requested	Х		
1.3	Sample volume adequate for # and types of analyses requested	Х		
1.4	Preservative correct for analyses requested	X		
1.5	Custody records continuous and complete	Х		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Х		
1.7	Date samples received	Х		
1.8	Condition upon receipt information provided	Х		

2.0 Analytical Laboratory Report

Line		Com	olete?	
No.	ltem	Yes	No	If no, explain
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	Х		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	N/A		
2.10	Narrative provided	X		
2.11	TAT met	X		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

Contract Verification Review (Continued)

3.0 Data Quality Evaluation

Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1 Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	Х		
3.2 Quantitation limit met for all samples	Х		
Accuracy a) Laboratory control sample accuracy reported and met for all samples		Х	VOC LCS recovery failed for 1,2-Dibromo-3-chloropropane, Methylene chloride (1203134975)
 Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique 	Х		
c) Matrix spike recovery data reported and met		Х	VOC PS recovery failed for Bromomethane, Methylene chloride (1203134976). MS recovery failed for Total Phenol (1203129826)
Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	Х		
b) Matrix spike duplicate RPD data reported and met for all organic samples	Х		
3.5 Blank data a) Method or reagent blank data reported and met for all samples		Х	Calcium detected in Metals Method Blank (1203131101)
b) Sampling blank (e.g., field, trip, and equipment) data reported and met	х		
3.6 Contractual qualifiers provided: "J"- estimated quantity; "B"- analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	Х		
3.7 Narrative addresses planchet flaming for gross alpha/beta	N/A		
3.8 Narrative included, correct, and complete	Х		
3.9 Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151	N/A		

Contract Verification Review (Continued)

4.0 Calibration and Validation Documentation

Item	Yes	No	Comments
4.1 GC/MS (8260 and 8270)			
a) 12-hour tune check provided	X		
b) Initial calibration provided	X		
c) Continuing calibration provided	X		
d) Internal standard performance data provided	X		
e) Instrument run logs provided	X		
4.2 GC/HPLC (8330, 8082, 9070A, and 8010)			
a) Initial calibration provided	N/A		
b) Continuing calibration provided	N/A		
c) Instrument run logs provided	N/A		
4.3 HRGC/HRMS (1668)	N/A		
a) 12-hour tune check provided			
b) Initial calibration provided	N/A		
c) Continuing calibration provided	N/A		
d) Internal standard performance data provided	N/A		
e) Labeled compound recovery data provided	N/A		

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
X
X
X
X
X
X

Contract Verification Review (Concluded)

5.0 Data Anomaly Report

Hem	Yes	No	Comments
5.1 DAR completed for monitoring and surveillance sample data	N/A		
5.2 Problems or outliers noted		х	
5.3 Verification or reanalysis requested from lab		X	

6.0 Problem Resolution

Sample/Fraction No.

Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted.

Analysis

Were deficiencies unresolved? 8 Yes x No Based on the review, this data package is complete.	x Yes θ No
If no, provide nonconformance report or correction request num	nber and date correction request was submitted:
Reviewed by:	Date: _08/25/2014
Were resolutions adequate and data package complete?	θ Yes θ No
Closed by: Date:	
	5 COC: 615 605, 615 606

Problems/Comments/Resolutions

ANNEX B Chemical Waste Landfill CY 2014 Soil-Gas Monitoring Forms and Reports

Field Forms

Data Validation Reports

Contract Verification Reports

Certificates of Analysis – provided on CD in plastic sleeve insert

FIELD SAMPLING FORMS CWL POST-CLOSURE CARE SOIL-GAS MONITORING

Form Title	Corresponding Procedure
Tailgate Safety Briefing	PLA 05-09
SUMMA® Canister Log	FOP 08-22
Soil Vapor Sampling Form	FOP 08-22
Analysis Request and Chain of Custody*	LOP 94-03

^{*}Completed AR/COC forms are provided in the Data Validation Section of this Annex.

FIELD SAMPLING FORMS CALENDAR YEAR 2014 SOIL-GAS MONITORING

TAILGATE SA	FETY MEETING FORM
Dept: 4142 Well Location: CWL	Date: 01/16/14 Time: 0855
Activities: VAPOR WELL SAMPLING	
(Anyone has the right to cease field activities for sa	afety concerns. The buddy system will be used when needed.)
Weather Conditions: Гетр: <u>幻り</u> ℉ Wind Speed: <u>~ら</u> MPH	
Chemicals Used: Acids in sample containers, stand Other:	lard solutions, Hach ACCU-VAC ampules
Safety T	Topics Presented
■ Be aware of slips, trips, and falls. Keep work area clean and use a stepping stool when necessary.	Be aware of environmental conditions (heat / cold stress). Dress accordingly. Wear sunscreen if necessary. Stay hydrated.
☑ Wear safety boots.	⊠ Be aware of electrical hazards
☑ Use safe lifting practices. Wear leather gloves if necessary.	☑ Be aware of pressure hazards.
☑ Be aware of pinch points on pump cable reel and hydraulic tailgate lift.	No eating or drinking at sampling count
☐ Be aware of chemical hazards.	
☐ Wear nitrile or latex gloves when sampling.	Wear communication device (cell phone EOC pager).
☐ Wear chemical safety goggles.	☐ Avoid spilling purge / decon water.
Hospital/Clinic: Sandia Medical Clinic Phone:	844-0911/911 Attendees
William 6165m	Signature ()
Printed Name	Signature Signature
Filhet L. Quittura Printed Name	Signature Jantine
Frinted Name	Signature Signature
Alfal Satille	Althor Silile
IMPORTANT NOTICE: A printed good of this dominan	two not be the desirant or month in effect. The efficient

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page

SUMMA® Canister Log

Serial #	Date Received	Date Tested for Initial VAC	Initial VAC at 5400 ft (in. Hg)	Date Used	End VAC at 5400 ft (in. Hg)	Date Returned to SMO	
34000519	1/14/124	1/16/14	~ 2 3	1/16/14	-8	1/17/14]
1 0504	1	1	-28	1	-8 -8		
0382	Quantity (III)		- 28		-8		
0442	O December 1		-28		-8]
1061			-246		- 8		
1352	L DE L		- 2 G		- y		FB
0091	STORY OF THE STORY		-20		~ K	-	
0345			-26		8		1
00.17			-24		-4		1
0206	Ada .		-26		-8		
770/	. [ب 2 –		-8		F/3
1659	-		-26		- ४		FB
0582			-26		-8		1
0022		a granita is	-27		-6		1
1305	,	and the same of th	-28		-46		1 .
0021			-26		-8	- Annual	
1347			-28		-8.	O. Co.	1
0038	i		-25		-8		FF
12011	, , , , , , , , , , , , , , , , , , ,		~26		-8		
1202	1	L La Carte C	- 26		- Ý		
0108	:		-29		-8		
0690			-26		-8		
0853	3.		-27		- 8		FB
1584	,		-27		-8		1
0119		-	-26		-8		1
0789	3		- 27		- b		
1559	1		-2 b	1	-4		1
2 0923	1	1	~27		-4		
			- · ·			 	1
							1

SUMMA®	Conictor	1 00	COIN	hatak	bar
2 CHALLALLY	Campie	LUS	COIII	prefea	υy.

Tim Jackson

Signature

_FOP 08-22 Revision 2 Page 47 of 51

Buckground = 0,6 ppn

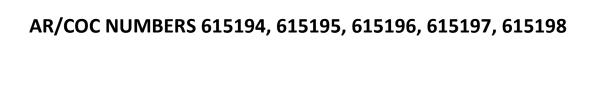
Soil Vapor Sampling Log

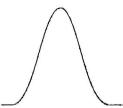
Location	Date	Time	Canister #	PID (ppm)	Starting Vacuum (in. Hg)	Ending Vacuum (in. Hg)	Location Comments
CUL -D1-100	1/16/14	0907	3400 0519	0,0	-28 79 111	- ち	Purge/Su-ple
eict-01 -160	1	0909	1/9	0.0	-26 Alu	16/14 n/a	Purch
4.		0910	<i>b</i>		<u></u>	L	Τ
		0912	3400 0504	Na	-28	- <u>8</u>	3n-p6
Cac-D1-240		0915	1/9	0,1	n/a	1/9	Pulge
		0916	1		1		<u> </u>
		0917	<u></u>	<u>†</u>	<u> </u>	1	J
7		0918	3400382	nla	-20	-8	Sample
cul-01-350	<u></u>	0928	ntg	0,0	nla	11/4	Purge
	,	0424			<u> </u>	1	
		0430	1	1		Ţ	
J		0931	34000482	nk	-28	∸ક	36-P4
CLI-D1-470		0934	n/1	0,0	0/5	1/9	Purge
		1]	- 1		1	· · ·
		0936	L	J	1:		<u></u>
<u></u>		0437	34001661	nlu	-26	-8	Sampl
C601-1-40		0453	34000041	0,0	-26	-8	Pury 15cmple
au-111-40		1957	nla	0. 0	-pla	n/4	Purch
		0450	3400 0345	9/4	-20	<u>-</u> 'ç	3m-p6
lac-011-120		100P	nla	0,00	11/9	114	Purct
		1001	1	Ţ		<i>t</i>	
		1002	3400017	nki	-26	^ز ج	sample
_ _		,004	34000206	L	-24	&	Deplicati
cui-v12-36		1022	34000548	0,00	-26	-8	Purge/Sample
cai-012-76		1°26	nla	0,00	nla	1/9	Durge
		1027	34000072	ula	-22	-6	50-p4
cer-v12-136		1029	NIC	0,0	46	1/4	0-161
		, 030	340013.05	n14	-28	-な	Shaple
<u>J</u>	4		34000021	1	-26	-4	surple Duplicate

Soil Vapor Sampling Log

Location	Date	Time	Canister #	PID (ppm)	Starting Vacuum (in. Hg)	Ending Vacuum (in. Hg)	Location Comments
cni-12-120	1/16/14	1043	34001397	0,0	-24	-4	Purgelsumple
eac-02-240		1056	nla	0,0	NIG	n/6	PU19+
		1057	<u> </u>		<u> </u>	<u> </u>	Ĺ.
Ļ		105°	34001207	nla	-2¢	<u>~ y</u>	sample
cuc-02-350		1101	119 1116	0,0.	Nla	<u>n/4</u>	PU13-
1		1102		1		1	
	1,240	1103	<u></u>		J.	1	7
<u> </u>	T. C. C. C. C. C. C. C. C. C. C. C. C. C.	1104	34001202	1/4	-26	-8	30-14
cuc-DZ-740	- XX	1157	119	0,0	11/4	1/4	Puryt
		7108			**************************************		·
-		1109	L L		1	<u> </u>	
4		11,0	34000108	n/4	-28	- B	34×p4
LUL-DZ-470	1	1112	1/9	0,0	n la	n/4	Puisi
	· · · · · · · · · · · · · · · · · · ·	11/3		· 			
		1114	<u></u>		<u></u>	<u> </u>	<u> </u>
J		4115	34000698	1/4	-26	- %	4n-plo
Chr-23-120		1136	1/6	0,0	1/4	η (4	Purgs
	* L. L. L. L. L. L. L. L. L. L. L. L. L.	//37	34001584	nla_	-27	<u>-8</u>	snupt
CLL-93-170		1139	14	0,0	N (2	n/G	Purgi
		! /4 0	<u> </u>			<u>+</u>	Ł.
	W. A. Francisco	1141	34000119	1/a	~26	-8	Samps
Chi-D3-360		1144	nle	0,00	15	MIG	Purgt
		1145	<u></u>	<u> </u>	1	T	<u> </u>
		1146	34000789	n/4	- 27	-8	Sampl
C-L-03-480		1146	119	0,0	16	n 14	Samp C Purs Re
<u> </u>		,,45			1		
		1150	1		4		4
<u> </u>	\ \dot	1151	34601554	n/6	-76	-4	samp 4
A		,	1900111	And the second s		****	

Soil Vapor Sampling Log


Location	Date	Time	Canister #	PID (ppm)	Starting Vacuum (in. Hg)	Ending Vacuum (in. Hg)	Location Comments
(we-D3-440	1/16/14	115Z	nla	4,4	1/9	119	Purgy
	\			4.3	<u> </u>	 (
		1193		9.1			
				3.5			
		1155		2,5			
		1156		2,5			
	and the same of th		1	2,5			
y	y	11576	34000823	nla	-26	-8	Sample
	_					_	
			·				
	_						
	_						
	_						
		-					
							,


SUMMARY SHEET FOR CALENDAR YEAR 2014 SAMPLES

Sample Summary for CWL Soil Vapor Monitoring FY14

			SUMMA		Sample		Associated Equipment Blank	Associated Trip Blank	Associated Field Blank	
Well ID	Sample Date	Sample ID / Port	Number	ARCOC	Number .	Sample Type	(ARCOC #/Sample #)	(ARCOC #/Sample #)	(ARCOC #/Sample #)	Comments
Chemical Wa	ste Landfill S	oil Vapor Monitorin	g: Project Ta	sk Number 1	46422.10.11	.03 / Service O	rder Number CF 327-14			
		CWL-UI1-40	34000091		095129	Environmental				
		CWL-UI1-80	34000345		095130	Environmental	n/a	n/a	615194 / 095133	
CWL-UI1	16-Jan-14	CWL-UI1-120	34000017	615194	095131	Environmental	174	11/4	0101047 000100	
		CWL-UI1-120	34000206		095132	Duplicate				
		CWL-UI1-FB1	34007701		095133	Field QC	n/a	n/a	n/a	Ultra Pure N2
		CWL-UI2-36	34000582		095134	Environmental				
		CWL-UI2-76	34000022		095135	Environmental	n/a	n/a	615195 / 095138	
CWL-UI2	16-Jan-14	CWL-UI2-136	34001305	615195	095136	Environmental	174	11/4	0101007 000100	
		CWL-UI2-136	34000021		095137	Duplicate				
		CWL-UI2-FB1	34001659		095138	Field QC	n/a	n/a	n/a	Ultra Pure N2
		CWL-D1-100	34000519		095139	Environmental				
		CWL-D1-160	34000504		095140	Environmental				
CWL-D1	16-Jan-14	CWL-D1-240	34000382	615196	095141	Environmental	n/a	n/a	615196 / 095144	
OWE D.	10 dan 11	CWL-D1-350	34000482	010100	095142	Environmental				
		CWL-D1-470	34001161		095143	Environmental				
		CWL-D1-FB1	34001352		095144	Field QC	n/a	n/a	n/a	Ultra Pure N2
		CWL-D2-120	34001397		095145	Environmental				
		CWL-D2-240	34001201		095146	Environmental				
CWL-D2	16-Jan-14	CWL-D2-350	34001202	615197	095147	Environmental	n/a	n/a	615197 / 095150	
0112.02	10 dan 11	CWL-D2-440	34000108	010107	095148	Environmental				
		CWL-D2-470	34000698		095149	Environmental				
		CWL-D2-FB1	34000038		095150	Field QC	n/a	n/a	n/a	Ultra Pure N2
		CWL-D3-120	34001584		095151	Environmental				
		CWL-D3-170	34000119		095152	Environmental				
CWL-D3	16-Jan-14	CWL-D3-350	34000789	615198	095153	Environmental	n/a	n/a	615198 / 095156	
0112-03	10 0411 14	CWL-D3-440	34000823	010100	095154	Environmental				
		CWL-D3-480	34001559		095155	Environmental				
		CWL-D3-FB1	34000853		095156	Field QC	n/a	n/a	n/a	Ultra Pure N2

DATA VALIDATION REF	PORTS FOR ENVIRO	NMENTAL SAMPLES

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.nel

Memorandum

Date:

March 10, 2014

To:

File

From:

Linda Thal

Subject:

GC/MS Organic Data Review and Validation – SNL

Site: CWL-SVM

AR/COC: 615194, 615195, 615196, 615197 and 615198

SDG: 320-5780-1

Laboratory: TestAmerica Laboratories, Inc. -West Sacramento

Project/Task: 146422.10.11.03 Analysis: VOCs by method TO-15

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM SMO AOP 00-03 Rev 3.

Summary

Twenty-eight samples were prepared and analyzed with accepted procedures using method EPA TO-15 (Determination of VOCs in Air collected in specially prepared canisters and analyzed by GC-MS). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. Ethylbenzene was detected at < the PQL in the FB, sample 320-5780-5, associated with samples 1 through -4. The associated results for all samples except sample -4 were detects < the PQL and <5X the MB value and will be **qualified 130U,B2** at the PQL.
- 2. Toluene was detected at > the PQL in the FB, sample 320-5780-5, associated with samples -1 through -4. The associated result for sample -4 was a detect < the PQL and <10X the FB value and will be qualified 10U,B2 at the PQL. The associated results for samples -1 through 1-3 were detects > the PQL and <10X the FB and will be qualified 310U,B2; 280U,B2; 320U,B2 (respectively) at the reported values.
- 3. o-Xylene was detected at < the PQL in the FB, sample 320-5780-5, associated with samples -1 through -4. The associated results for all samples were detects < the PQL and <5X the MB value and will be qualified 130U,B2; 130U,B2; 130U,B2 and 10U,B2 (respectively) at the PQL.
- 4. m,p-Xylene was detected at < the PQL in the FB, sample 320-5780-5, associated with samples -1 through -4. The associated results for all samples except sample -4 were detects ≤ the PQL and <5X the FB value and will be qualified 260U,B2; 260U,B2 and 270U,B2 (respectively) at the PQL.

- 5. Acetone was detected at < the PQL in the FB, sample 320-5780-5, associated with samples -1 through -4. The associated results for all samples were detects < the PQL and <10X the FB value and will be qualified 1600U,B2; 1700U,B2; 1700U,B2 and 130U,B2 (respectively) at the PQL.
- 6. Acetone was detected at < the PQL in the FB, sample 320-5780-10, associated with samples -6 through -9. The associated results for all samples were detects < the PQL and <10X the FB value and will be qualified 430U,B2; 490U,B2; 1600U,B2 and 1600U,B2 (respectively) at the PQL.
- 7. Acetone was detected at < the PQL in the FB, sample 320-5780-16, associated with samples -11 through -15. The associated result for sample -14 was a detect > the PQL and <10X the FB value and will be qualified 1200U,B2 at the reported value. The remaining associated sample results were detects < the PQL and <10X the FB value and will be qualified 1600U,B2; 2400U,B2; 2200U,B2 and 22U,B2 (respectively) at the PQL.
- 8. Acetone was detected at < the PQL in the FB, sample 320-5780-28, associated with samples -23 through -27. The associated results for samples -23, -24 and -27 were detects > the PQL and <10X the FB value and will be qualified 1400U,B2; 1400U,B2 and 7.4U,B2 (respectively) at the reported value. The associated results for samples -25 and -26 were detects < the PQL and <10X the FB value and both will be qualified 1600U,B2 at the PQL.
- 9. Dichlorodifluoromethane was detected at < the PQL in the FB, sample 320-5780-28, associated with samples -23 through -27. The associated result for sample -24 was a detect < the PQL and <5X the FB value and will be **qualified 64U,B2** at the PQL. The associated result for sample -27 was a detect > the PQL and <5X the FB value and will be **qualified 0.57U,B2** at the reported value.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times

The samples were analyzed within the prescribed holding time and properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as follows.

The 1,2-dichloro-1,1,2,2-tetrafluoroethane %D was >30% but ≤45% with negative bias for the CCV associated with samples -1 through -3 and -5 through -18. The associated sample results were NDs and since no other calibration infraction occurred, will not be qualified.

Blanks

No target analytes were detected in the blanks except as noted above in the Summary section and as follows.

Ethylbenzene and m,p-xylene were detected at < the PQL in the FB, sample 320-5780-5. The associated results for sample -4 were NDs and will not be qualified.

2-Butanone was detected at < the PQL in the FB, sample 320-5780-16, associated with samples -11 through -15. All associated sample results were NDs and will not be qualified.

Trichloroethene was detected at < the PQL in the FB, sample 320-5780-22, associated with samples -17 through -21. All associated sample results were detects >5X the FB value and will not be qualified.

Dichlorodifluoromethane was detected at < the PQL in the FB, sample 320-5780-28, associated with samples -23 through -27. The associated results for samples -23, -25 and -26 were NDs and will not be qualified.

Surrogates

All surrogate acceptance criteria were met.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

An MS/MSD was not performed.

Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD)

The LCS met all QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted except as follows.

Sample -1 was diluted 328X and reanalyzed at a 322X for acetone only.

Sample -2 was diluted 331X and reanalyzed at a 331X for acetone only.

Sample -3 was diluted 334X and reanalyzed at a 334X for acetone only.

Sample -4 was diluted 25.6 and reanalyzed at a 320X for trichloroethene only.

Sample -6 was diluted 325X and reanalyzed at a 86.7X for acetone only.

Sample -7 was diluted 306X and reanalyzed at a 98X for acetone only.

Sample -8 was diluted 325X and reanalyzed at a 325X for acetone only.

Sample -9 was diluted 322X and reanalyzed at a 322X for acetone only.

Sample -11 was diluted 314X and reanalyzed at a 314X for acetone only.

Sample -12 was diluted 470X and reanalyzed at a 470X for acetone only.

Sample -13 was diluted 443X and reanalyzed at a 443X for acetone only.

Sample -14 was diluted 442X, reanalyzed at 442X (surrogates only reported) and reanalyzed at a 221X for acetone only.

Sample -15 was diluted 13.4X and reanalyzed at a 4.45X for acetone only.

Sample -17 was diluted 324X and reanalyzed at a 324X for acetone only.

Sample -18 was diluted 328X and reanalyzed at a 273X for acetone only.

Sample -19 was diluted 320X.

Sample -20 was diluted 6.25X.

Sample -21 was diluted 325X (surrogates only reported) and reanalyzed at 130X.

Sample -23 was diluted 164X.

Sample -24 was diluted 161X.

Sample -25 was diluted 324X.

Sample -26 was diluted 328X.

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Other QC

Mass spectra acceptability was not verified during data validation.

Five FBs were submitted, one for each AR/COC. A field duplicate pair was submitted with AR/COC 615194 and 615195. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 03/11/14

Sample Findings Summary

AR/COC: 615194, 615195, 615196, 615197, 615198

Page 1 of 2

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
TO15			
	095129-001/CWL-UI1-40	ACETONE (67-64-1)	1600U, B2
	095129-001/CWL-UI1-40	ETHYLBENZENE (100-41-4)	130U, B2
	095129-001/CWL-UI1-40	M,P-XYLENE (179601-23-1)	260U, B2
	095129-001/CWL-UI1-40	O-XYLENE (95-47-6)	130U, B2
	095129-001/CWL-UI1-40	TOLUENE (108-88-3)	310U, B2
	095130-001/CWL-UI1-80	ACETONE (67-64-1)	1700U, B2
	095130-001/CWL-UI1-80	ETHYLBENZENE (100-41-4)	130U, B2
	095130-001/CWL-UI1-80	M,P-XYLENE (179601-23-1)	260U, B2
	095130-001/CWL-UI1-80	O-XYLENE (95-47-6)	130U, B2
	095130-001/CWL-UI1-80	TOLUENE (108-88-3)	280U, B2
	095131-001/CWL-UI1-120	ACETONE (67-64-1)	1700U, B2
	095131-001/CWL-UI1-120	ETHYLBENZENE (100-41-4)	130U, B2
	095131-001/CWL-UI1-120	M,P-XYLENE (179601-23-1)	270U, B2
	095131-001/CWL-UI1-120	O-XYLENE (95-47-6)	130U, B2
	095131-001/CWL-UI1-120	TOLUENE (108-88-3)	320U, B2
	095132-001/CWL-UI1-120	ACETONE (67-64-1)	130U, B2
	095132-001/CWL-UI1-120	O-XYLENE (95-47-6)	130U, B2
	095132-001/CWL-UI1-120	TOLUENE (108-88-3)	10U, B2
	095134-001/CWL-UI2-36	ACETONE (67-64-1)	430U, B2
	095135-001/CWL-UI2-76	ACETONE (67-64-1)	490U, B2
	095136-001/CWL-UI2-136	ACETONE (67-64-1)	1600U, B2
	095137-001/CWL-UI2-136	ACETONE (67-64-1)	1600U, B2
	095139-001/CWL-D1-100	ACETONE (67-64-1)	1600U, B2
	095140-001/CWL-D1-160	ACETONE (67-64-1)	2400U, B2

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	095141-001/CWL-D1-240	ACETONE (67-64-1)	2200U, B2
	095142-001/CWL-D1-350	ACETONE (67-64-1)	1200U, B2
	095143-001/CWL-D1-470	ACETONE (67-64-1)	22U, B2
	095151-001/CWL-D3-120	ACETONE (67-64-1)	1400U, B2
	095152-001/CWL-D3-170	ACETONE (67-64-1)	1400U, B2
	095152-001/CWL-D3-170	DICHLORODIFLUOROMETHANE (75-71-8)	64U, B2
	095153-001/CWL-D3-350	ACETONE (67-64-1)	1600U, B2
	095154-001/CWL-D3-440	ACETONE (67-64-1)	1600U, B2
	095155-001/CWL-D3-480	ACETONE (67-64-1)	7.4U, B2
	095155-001/CWL-D3-480	DICHLORODIFLUOROMETHANE (75-71-8)	0.57U, B2

All other analyses met QC acceptance criteria; no further data should be qualified.

Data Validation Summary Worksheet

AR/COC #: 615194, 615195, 615197 and 615198 Site/Project: CWL Validation Date: 03/11/2014

SDG #: 320-5780-1 Laboratory: TA West Sacramento, CA Validator: Linda Thal

Matrix: Air # of Samples: 28 CVR present: Yes Analysis Type: X□ Organic □ Metals

AR/COC(s) present: Yes Sample Container Integrity: OK

			Requ	ested Anal	lyses Not R	eported	
40	Sample Number	Laboratory ID	organic	genchem	metals	rad	Comments
None				E.			

		Hold T	ime/Preser	vation Outliers				
Sample Number	Laboratory ID	Analysis	Pres.	Coll. Date	Prep. Date	Anal. Date	Anal. within 2X HT	Anal. beyond 2X HT
None								
							9	

Comments: Collected 01/16/2014

Validated by: X Mal

Revised 7/2007

Organic Worksheet (GC/MS)

AR/COC #: 615194, 615195, 615196, 615197 and 615198

SDG #: 320-5780-1

Matrix: Air

Laboratory Sample IDs: 320-5780-1 through -28

Method/Batch #s: TO15: 358561; 359152; 361383; 361934

Tuning (pass/fail): Pass TICs Required? (yes/no): NA

		Calib	ration			5X			LCS					
Analyte (outliers)	Int.	RF	RSD/ R ²	(ICV) CCV %D	Method Blank	(10X) MB	LCS %R	LCSD %R	LCSD RPD					
35856 Acetone reanalyzed					_					FB -5	FE	3-10	FB-16	\Box
Acetone	NA	✓	✓	1	✓	NA	68*	68*	✓	-			**	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	NA	✓	1	-32	✓	NA	✓	1	✓	1	,	/	✓	
Ethylbenzene	NA	✓	1	1	✓	NA	✓	1	1	.082J	-	/	✓	\Box
Toluene	NA	✓	✓	✓	✓	NA	✓	1	1	.45		/	✓	\Box
m,p-Xylene	NA	✓	1	✓	✓	NA	✓	✓	✓	.19Ј	V	/	✓	\Box
o-Xylene	NA	✓	✓	✓	✓	NA	✓	✓	✓	.068J		/	✓	\top
2-Butanone (MEK)	NA	✓	✓	✓	✓	NA	1	✓	1	✓	3	✓	0.3J	
² 35915				_						FB-22	FE	3-28		
Trichloroethene	NA	✓	✓	✓	✓	NA	1	✓	✓	.39J		✓	✓	
Acetone	NA	✓	✓	✓	✓	NA	1	✓	1	✓	0.	96J	✓	
Dichlorodifluoromethane	NA	1	✓	√ .	✓	NA	1	1	✓	✓	, j	18J	✓-	
³ 36138										FB -5R	Λ Ι	B- RA	FB- 16RA	
Acetone	NA	1	1	✓	1	NA	✓	✓	✓	1.1J	1	.1J	1.9J	
⁴ 36193 Acetone only														
1,1-Dichloroethene	NA	1	✓	✓	✓	NA	✓	69**	✓					
			Sı	irrogate	Recovery	Outliers				-	•			
Sample ID													_	
None			_											
•				19	Outliers		-		<u> </u>					
Sample ID Area	RT .	Area	RT	Area	R'	Γ	Area	RT		Area	RT	Are	a	RT
None														

Comments: No raw data/mass spectra validated. MDLs and RLS reported. Samples spiked with 3 surrogates. Instrument ATMS 2 ICAL 01/31/2014. LCS/LCSD all batches.

*All samples reanalyzed for acetone; ** samples analyzed for acetone only Cannister Certifications were provided in the data package.

Revised 7/2007

320-5780 Chain of Custody

Internal Lab	/															. في	<u>1</u> of <u>1</u>
Batch No.	MA	7				SMO Use						10	1		AR/COC	618	5194
Project Nam	ne:	CWL-SV	M	Date Sample	s Shipped.	1/17/	14	-	SMO A	uthorization:	101	194		Waste Ci	naracterization		
Project/Task	(Manager:	: Tim Jack	son	Carrier/Wayb	ill No.	7213	724		SMO C	ontact Phon	IN	-	3me	RMMA			
Project/Task	Number:	146422.1	0.11.03	Lab Contact:		BETH	RILLY			Wendy Pa	alencia/50	5-844-3132		Released	l by COC No.		
Service Orde	er:	CF327-14	4	Lab Destinati	on·	TA/West S		0	Send R	eport to SMC	D:					□ 4	lº Celsius
				Contract No.:	-	PO 691437	7		L	Wendy Pa	alencia/50	5-844-3132		Bill to. Sandia	National Laboratori	ies (Accou	nts Payable)
Tech Area:				1										P.O. Box 5800	o, MS-0 154		
Building:		Room:		Operationa	d Site:			o						Albuquerque,	NM 87185-0154		
					Depth	Date/	Time	Sample	C	ontainer	Preserv-	Collection	Sample	Para	ameter & Method	1	Lab
Sample No.	Fraction	Sa	mple Location D	etail	(ft)	Colle	cted	Matrix	Туре	Volume	ative	Method	Туре	<u> </u>	Requested		Sample ID
095129	-001	CWL-UI1	-40_ (#:	34000091)		1/16/14	9:53	sg	sc	6 L	None	G	SA	VOC-TO15			
095130	-001	CWL-UI1	-80 (#3	34000345)		1/16/14	9:57	SG	sc	6 L	None	G	SA_	VOC-TO15			
095131	-001	CWL-UI1	-120 (# 3	34000017)		1/16/14	10:02	SG	sc	6 L	None	G _	SA	VOC-TO15			
095132	-001	CWL-UI1	-120 (#3	34000206)		1/16/14	10:04	SG	sc	6 L	None	G	DU	VOC-TO15			
095133	-001	CWL-UI1	-FB1	(# 7701)		1/16/14	10:06	UPN	sc	6L	None	G	FB	VOC-TO15			
	1		·								_						
										-				 -	<u></u>		
 -							-			_							
														 			
Last Chain	17	[Yes	<u> </u>		Samole	Tracking		SMO	Use	Special Ins	tructions	/OC Requir	ements:	<u> </u>		Condi	tions on
Validation		Yes			Date Ent	_	-			EDD		✓ Yes	r	No			ceipt
Backgroun		Yes			Entered					Turnaroun	d Time	7 Da		15 Day*	✓ 30 Day	1101	soipt.
Confirmato		Yes			QC inits.	<u> </u>				Negotiated			<u> </u>				
Sample	N	ame	Signatu		Init.	Company	//Organizat	ion/Phone	e/Cell	Sample Dis	sposal	Return	to Client	1	Disposal by Lab	-	
Team	William C	Gibson	Willens	Helv1	W28	SNL/4142/50	5-284-330	7/505-239	9-7367	Return San	nples By:						
Members	Robert L	ynch	Kittyuch			SNL/4142/50)5-844 -4 01	3/505-250	0-7090	Comments	:	Send Report to	Tım Jackso	n/4142/MS 0729/	505-284-2547		
	Alfred Sa	intillanes	Hele Sail	ile	CLA	SNL/4142/50	05-844-513	0/505-228	3-0710]							-
	Tım Jack	son	T=4115-		Th	SNL/4142/50	5-284-254	7/505-263	3-6639								
	Gilbert Q	uintana	427290	reland	se. le 1	SNL/4143/50										Lab	Use
ৰ Relinquishe	ed by 🎢 🎻	Jung 50		Org4/4-		1/17/14				uished by			Org.		Date	Time	
. Received t	ру 🧷	1/1/93		Org. 414		1/17/14		2834					Org.		Date	Time	
2.Relinquishe	ed by	1.5%	1. Gus	Org. 414	Z Date	117/14	Time /	245	4.Reling	uished by			Org.		Date	Time	_
Received b		1 1/1		Org.	Date	1-20-14	Time	915	4. Recei	ved by			Org.		Date	Time	
Prior confir	mation/w	íth ŚM Ó ⁄re	quired for 7 and	15 day TAT		-		- /									

Internal Lab																Page _1_	of_ <u>1</u> _
Batch No.	NA					SMO Uşe	,					10	1		AR/COC	61519	95
Project Name	∋ :	CWL-SV	<u>—</u>	Date Sample	s Shipped.	1//	7/14	-	SMO A	uthorization:	/0/1	1 1/2		Waste Cha	aracterization		$\neg \neg$
Project/Task	Manager:	Tim Jack	son	Carrier/Wayb	ill No.	21	3 5	_		ontact Phone).		Swy	RMMA			
Project/Task	Number:	146422.1	0.11.03	Lab Contact:		ROTH R				Wendy Pa	alencia/50	5-844-3132	100	Released	by COC No.		
Service Orde	r:	CF327-14	 -	Lab Destinati	on.	TA/West S		:0	Send R	eport to SMC				1	•	☐ 4º C	elsius
1			·	Contract No.		PO 691437				Wendy Pa	alencia/50	5-844-3132		Bill to: Sandia	National Laboratorie		
Tech Area:												-		P.O Box 5800,		• • • • • • • • • • • • • • • • • • • •	-,/]
Building:	_	Room:		Operationa	al Site:									· '	M 87185-0154		
<u></u>					Depth	Date/		Sample	C	ontainer	Preserv-	Collection	Sample	-	meter & Method		Lab
Sample No.	Fraction	Sai	nple Location	Detail	(ft)	Colle		Matrix	Туре	Volume	ative	Method	Type		Requested		mple ID
		i	-		(,			 		10.0	unio		1,700		requested	-	iipic ib
095134	-001	CWL-UI2	-36 (#	‡ 34000582)		1/16/14	10:22	SG	SC	6L	None	G	SA	VOC-TO15			
095135	-001	CWL-UI2	-76 <u>(</u> #	‡ 34000022)		1/16/14	10:27	SG	sc	6 L	None	G	SA	VOC-TO15			
095136	-001	CWL-UI2	-136 (#	34001305)		1/16/14	10:30	SG	sc	6 L	None	G	SA	VOC-TO15			
0 <u>951</u> 37	-001	CWL-UI2	-136 (#	34000021)	:	1/16/14	10:32	sg	sc	6 L	None	G	DU	VOC-TO15			
095138	-001	CWL-UI2	- -FB1 (#	34001659)		1/16/14	10:18	UPN	sc	6 L	None	G	FB	VOC-TO15			
			<u></u>														\neg
			_														
																	\dashv
ļ		<u></u>					-			 -	 						\dashv
	-																
1 4 01														l,			
Last Chain:		Yes				Tracking		SMO	Use	Special Ins	tructions/					Conditions	
Validation I		✓ Yes_			Date Ent			_		EDD		✓ Yes	_=	No		Receip	rt
Backgroun		Yes			Entered	<u> </u>				Turnaroun		7 Da	<u> </u>	15 Day*	☑ 30 Day		
Confirmato	ry:	L Yes			QC inits.	<u>:</u>				Negotiated	TAT	<u>Ш</u>					
Sample	Na	ame	Signa		Init.	Company	/Organizat	ion/Phone	e/Cell_	Sample Dis	sposal	Return	to Client		isposal by Lab		J
Team	William G	Sibson	Willeans		WXX	SNL/4142/50	5-284-330	7/505-239	9-7367	Return San	nples By:	_					1
Members	Robert Ly	rnch	KATIN	A 7	PL	SNL/4142/50	5-844-401	3/505-250	7090	Comments	:	Send Report to	Tim Jacksor	n/4142/MS 0729/50	05-284-2547		1
	Alfred Sa			itille.	104	SNL/4142/50)5-844-513	0/505-228	3-0710	1							1
	Tim Jacks	son	1-4-01	14	-1/	SNL/4142/50	5-284-254	7/505-263	3-6639	1							
	Gilbert Q	untana	Man IM		ou	SNL/4143/50	5-284-250	7/505-263	3-2606	1						Lab Use	e
স.Relinquishe		Vol=	at Il		2 Date		7 Time 0			uished by			Org.	D	ate	Time	\neg
. Received b	''/	76 4 1	Corren	Org. 4147		1-17-14			3. Recei	_			Org.		ate	Time	\neg
2.Relinguishe		7 25	1 (1)	org. 414.	Date	1-17-14		945					Org.		ate	Time	$\neg \neg$
د Received b		1 1	· ·	Org.	Date	1-22-14	Time C	<u> </u>	4 Recei	-			Org.		ate	Time	$\neg \neg$
		th SMO rel	uired for 7 an			1 5-5-1-(· ·····	لــــر،		/							

Internal Lab	.1												_	Page _	<u>1_of_1_</u>
Batch No.	NA				SMO Use,	,					100	1	AR/COC	615	196
Project Name	e: 7	CWL-SVM	Date Sample	s Shipped	1/1	7/14	/	SMO A	thorization.	10/1	71		Waste Characterization		
Project/Task	Manager:	Tim Jackson	Carrier/Wayl	oill No	721	372	4	sмо с	ontact Phone	: 7	1 60	SMO	RMMA		
Project/Task	Number:	146422.10.11.03	Lab Contact.		B v 91+	RILLY		1	Wendy Pa	alencia/50	5-844-3132	7-43	Released by COC No.		
Service Orde		CF327-14	Lab Destinat		TA/West Sa			Send Re	eport to SMC					1 4	° Celsius
			Contract No	_	PO 691437		_		•		5-844-3132		Bill to Sandia National Laboratorie		
Tech Area:									***			_	P.O. Box 5800, MS-0154	o () 1000ai	1651 - 444-071
Building:		Room;	Operation	al Sita:									Albuquerque, NM 87185-0154		
Dullullig.		TOOM,	Joperation	Depth	Date/T		Sample		ontainer	Preserv-	Collection	Sample		Т	
Sample No.	Fraction	Sample Location	. Dotail	(ft)	Collec		Matrix	Туре	Volume	ative	Method	-	Parameter & Method	1.	Lab
Sample No.	Fraction	Sample Location	I Detail	(14)	Conec	<u> </u>	Watrix	Type	Volume	auve	Metriod	Type	<u>Req</u> uested		Sample ID
095139	-001	CWL-D1-100 (i	\$ 34000519)	-	1/16/14	9:07	SG	sc	6 L	None	G	SA	VOC-TO15		
095140	-001	CWL-D1-160 (‡ 34000504)		1/16/14	9:12_	SG	sc	6 L	None	G	SA	VOC-TO15		
095141	-001	CWL-D1-240 (i	‡ 34000382)		1/16/14	9:18	SG	sc	6 L	None	G	SA	VOC-TO15		
095142	-001	CWL-D1-350 (i	‡ 34000482)		1/16/14	9:31	SG	sc	6 L	None	G _	SA	VOC-TO15		
095143	-001	CWL-D1-470 (i	<u># 34001661)</u>		1/16/14	9:37	SG	sc	6 L	None	G	SA	VOC-TO15		
095144	-001	CWL-D1-FB1 (#	£ 34001352)		1/16/14	9:43	UPN	SC	6 L	None	G	FB	VOC-TO15		
-			·		-]						
															_
		-													
Last Chain		Yes		Sample	Tracking		SMO	Use	Special Ins	tructions	/QC Requir	ements:	·	Condit	ions on
Validation	Rea'd:	☑ Yes		Date Ent	ered:				EDD .		✓ Yes		No	Red	ceipt
Backgroun		Yes	, ,	Entered					Turnaround	d Time	7 Day	=	15 Day* 30 Day		
Confirmato		Yes	•	QC inits.			_		Negotiated						
Sample			ature _	init	Company	/Organizat	ion/Phone	e/Cell	Sample Dis		Return	to Client	✓ Disposal by Lab		-
Team	William G	12	19.01	2 × A	SNL/4142/50				Return San						Į
1	Robert Ly	- Vigory Court	ggung		SNL/4142/50				Comments		Cond Day of to	Too laster	-/44 40/HO 0700/F0F 204 25/47		
Members	Alfred Sa			 	SNL/4142/50				Collinienra	•	зепа кероп п	Tim Jackson	n/4142/MS 0729/505-284-2547		
		1 // //	7.										ľ		
	Tim Jack	 / - / -	"/		SNL/4142/50				}						
Dallin Lat :	Gilbert Qu				SNL/4143/50								D-/-		Use
1.Relinquishe	· /	Afri Softelle	Org 414			Time O			uished by		·	Org.	Date	Time	
1. Received b			Org. 414				894					Org.	Date	Time	
2.Relinquishe	····	2/4 gefrage	60rg. 414.		1/17/14				uished by			Org.	Date	Time	
2. Received b	<u>у</u>	the SMO required for 7 a	Org.	Date	122-14	Time 6	715	4. Recei	ved by	·		Org.	<u>Dat</u> e	Time	

Internal Lab	./														_	Page_	<u>1</u> of <u>1</u>
Batch No.	NI	4				SMO Use	/				_	100	1		AR/COC	615	197
Project Name		CWL-	SVM	Date Sample	s Shipped.	1/13	7/14		SMO A	thorization:	121	171	1	Waste Ch	aracterization		
Project/Task		Tim Ja	ckson	Camer/Wayb	oll No.	2/3	124			ontact Phone	: "	, ,	SHO	RMMA			
Project/Task	Number:	14642	2.10.11.03	Lab Contact:		B 14774	RILLY	V		Wendy Pa	alencia/505	5-844-3132 [°]		Released	by COC No.		
Service Orde	r:	CF327	-14	Lab Destinati	ion:	TA/West S		•	Send Re	eport to SMC				1 —	-	□ 4	° Celsius
				Contract No	:	PO 69143	7	-		Wendy Pa	alencia/50	5-844-3132		Bill to. Sandia	National Laboratorie	s (Accour	nts Pavable).
Tech Area:														P.O Box 5800	. MS-0154	•	
Building:		Room:		Operation	al Site:										NM 87185-0154		
	l			1-1	Depth	Date/	Time	Sample	Co	m———— ontainer	Preserv-	Collection	Sample		meter & Method	$\overline{}$	Lab
Sample No.	Fraction		Sample Location (Detail	(ft)	Colle		Matrix	Type	Volume	ative	Method	Type		Requested		Sample ID
<u> </u>		_	-						-								
095145	-001	CWL-)2-120 (# :	34001397 <u>)</u>		1/16/14	10:53	SG	SC	6 L	None	G	SA	VOC-TO15		\longrightarrow	
095146	-001	CWL-[02-240 (# :	34001201)		1/16/14	10:58	SG	SC	6 L	None	G	SA	VOC-TO15			
095147	-001	CWL-I	02-350 (#	34001202)		1/16/14	11:04	SG	sc	6 L	None	G	SA	VOC-TO15		}	
095148	-001	CWL-[02-440 (#:	34000108)		1/16/14	11:10	SG	sc	6 L	None	G	SA	VOC-TQ15			
095149	-001	CWL-E	02-470 (# :	34000698)		1/16/14	11:15	SG	sc	6 L	None	G	SA	VOC-TO15			
2 095150	-001	CWL-E	D2-FB1 (# 3	34000038)	-	1/16/14	10:47	UPN	sc	6 L	None	G	FB	VOC-TO15			
<u></u>				,				-							<u> </u>	$\neg \uparrow$	
			 ·							<u> </u>		_				\longrightarrow	
			_														
']							1									!
			. <u>.</u>														
Last Chain:		Ye	s		Sample	Tracking		SMO	Use	Special Ins	tructions	QC Requir	ements:	· ·		Condit	ions on
Validation I	Reg'd:	Ye	 S		Date Ent	ered:				EDD		✓ Yes		No		Re	ceipt
Backgroun	d:	Ye	 s		Entered				•	Turnaround	d Time	7 Day	<u>*</u>	15 Day*	✓ 30 Day		•
Confirmato	ry:	Ye	s	··· <u></u>	QC inits.	:				Negotiated	TAT						
Sample	Na	ame	Signat		Init.	Company	//Organizat	ion/Phone	e/Cell	Sample Dis	posal	Return	to Client	<u> </u>	isposal by Lab		
Team	William G	ibson	William	Alla	0 9 8 8	SNL/4142/5	05-284-330	7/505-239	9-7367	Return San	nples By:						}
Members	Robert Ly	nch	alters		a	SNL/4142/5	05-844-401	3/505-250)-7090	Comments	:	Send Report to	Tım Jacksor	1/4142/MS 0729/5	05-284-2547		
	Alfred Sa	ntillanes	AMM Son	tille	COT	SNL/4142/5	05-844-513	0/505-228	3-0710								
	Tim Jacks	s on	T- Gull	<i>q</i> -	71	SNL/4142/5	05-2 <mark>84-254</mark>	7/505-263	3-6639								
	Gilbert Qu	uințana	Mint 26	a tree	ear	SNL/4143/50	05-284-250	7/505-263	3-2606							Lab	Use_
Relinquishe	d by H	hal .	Satille	Org4/4	J Date	1-17-14	/ Time O	834	3.Relinq	uished by			Org	D	ate	Time	
3. Received b	y 20	11 9	2 same	Org. 4/47	Date	1-1474	Time 🕖	834	3. Recei	ved by			Org.	D	ate	Time	
2.Relinquishe	d by	11.4	The SMO	Org. 4142	? Date	1-17-14	/ Time Ø	945	4.Relinq	uished by			Org.	D	ate	Time	
2. Received b		11/	1	Org.	Date	1-22-1	✓ Time	910	4. Recei	ved by			Org.	a	ate	Time	
Prior confir	nation wi	h'smo	required for 7 and					, -									

Internal Lab																Page_	<u>1</u> of <u>1</u>
Batch No.	NA					SMO Ușe	,					101			AR/COC	615	198
Project Name	e: '	CWL-SV	/M	Date Sample	s Shipped:	1//3	2/14	-	SMO A	ıthorization	= 1/2	91/2		Waste Cha	racterization		
Project/Task		Tim Jack	cson	Carrier/Wayb	ull No.	2	777	Ч	SMO C	ontact Phone		, , , ,	smo	RMMA			
Project/Task		146422.		Lab Contact:		BOTH	RILIPY	-				5-844-3132 [°]		Released b	V COC No		
Service Orde		CF327-1		Lab Destinati		TA/West S			Sond R	eport to SMC		7 0 1 7 0 1 0 2			,, 000 No.		° Celsius
Service Orde		01 021-1	-	—		PO 691437			Selia IV	•		5-844-3132		B. 11 - O 11 - N			
				Contract No.:		FO 09 143		i		vvenuy Pa	alencia/505	7-0 44 -3132		1	National Laboratories	s (Accour	its Payable),
Tech Area:	-													P.O. Box 5800,			
Building:		Room:		Operationa	al Site:						_			Albuquerque, N	M 87185-0154		
1	ľ				Depth	Date/	Time	Sample	ŭ	ontainer	Preserv-	Collection	Sample	Paran	neter & Method		Lab
Sample No.	Fraction	Sa	imple Locatio	n Detail	(ft)	Colle	cted	Matrix	Type	Volume	ative	Method	Type	ļ <u> </u>	Requested	- 1:	Sample ID
095151	-001	CWL-D3	-120	(# 34001584)		1/16/14	11:37	SG	sc	6 L	None	G	SA	VOC-TO15			
095152	-001	CWL-D3	-170 ((# 34000119)		1/16/14	11:41	SG	sc	6 L	None	G	SA	VOC-TO15			
095153	-001	CWL-D3	-350	(# 34000789)		1/16/14	11:46	SG	sc	6 L	None	G	SA	VOC-TO15			_
095154	-001	CWL-D3		(# 34000823)		1/16/14	12:00	SG	sc	6 L	None	G	SA	VOC-TO15			
	-001																
095155		CWL-D3	,	(# 34001559)		1/16/14	11:51	SG	SC_	6 L	None	G	SA	VOC-TO15		-+	
o 095156	-001	CWL-D3	-FB1 (# 34000853 <u>)</u>	_	1/16/14	11:32	UPN	sc_	6 L	None	G	FB	VOC-TO15			
						l											
						. <u> </u>											
																	
Last Chain:	<u>.</u>	Yes			Sample	Tracking		SMO	Lise .	Special Ins	tructions/	OC Requir	ements:			Condit	ions on
Validation I		✓ Yes			Date Ent	•		00		EDD		✓ Yes		No			ceipt
Backgroun		Yes			Entered					Turnaround	d Time	7 Day		15 Day*	✓ 30 Day	1.00	Ю
Confirmato	ry:	Yes			QC inits.					Negotiated	TAT						-
Sample	Na	ame	Sigi	nature	Init.	Company	//Organizat	ion/Phone	/Cell	Sample Dis	sposal	Return	to Client	☑ Di	sposal by Lab		
Team	William G	ibson	Willen.	Sill	WYS	SNL/4142/50	05-284-330	7/505-239	9-7367	Return San	nples By:		•				
	Robert Ly	nch	WAN	ch	EL	SNL/4142/50	05-844-401	3/505-250	7090	Comments	:	Send Report to	Tım Jacksor	1/4142/MS 0729/50	5-284-2547		
	Alfred Sa	ntillanes		artille	00	SNL/4142/50	05-844-513	0/505-228	 3-0710								-
	Tim Jacks	son	TiAu	da-		SNL/4142/50										-	
	Gilbert Qu	intana	13 2 21	mlune		SNL/4143/50	05-284-250	7/505-263	-2606							Lab	Use
Relinquishe	d by	Int 50	atille	Org. 4/4.	2 Date	1-17-14	Time 💪	834	3.Relinq	uished by			Org.	Da	ite	Time	
Received b	y 200	49.	Kno Em	Org. 4147	L Date	1-17-1	Time C	834	3. Recei	ved by			Org.	Da	nte	Time	
2 ¹ Relinquishe		246	The Co	149rg. 4147	. Date	1-17-16	/ Time /	2945	4.Reling	uished by			Org.	Da	ate	Time	
Received b		1/1	4	Org.		1-22-14	Time 6	- (-) 	4. Recei				Org.	Da		Time	
		th sMO A	equired for 7 a	and 15 day TAT				٠٠				-			_		

CONTRACT VERIFICATION REVIEW FORMS

Note: The review forms in this section include AR/COC numbers for environmental samples and additional AR/COC numbers for waste characterization samples.

AR/COC Number	Sample Type
615194	Environmental*
615195	Environmental*
615196	Environmental*
615197	Environmental*
615198	Environmental*

^{*} These AR/COC forms are provided in the Data Validation Section of this Annex.

Contract Verification Review (CVR)

Project Leader	JACKSON	Project Name	CWL SVM	Project/Task No. 146422_10.11.03
ARCOC No.	615194, 615195, 615196, 615197 & 615198	Analytical Lab	TA-WEST SACRAMENTO	SDG No. 320-5780-1

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line		Comp	olete?	
No.	ltem	Yes	No	If no, explain
1.1	All items on ARCOC complete - data entry clerk initialed and dated	Х		
1.2	Container type(s) correct for analyses requested	X		
1.3	Sample volume adequate for # and types of analyses requested	X		
1.4	Preservative correct for analyses requested	X		
1.5	Custody records continuous and complete	X		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Х		
1.7	Date samples received	Х		
1.8	Condition upon receipt information provided	Х		

2.0 Analytical Laboratory Report

Line	-	Comp	olete?	
No.	Item	Yes	No	If no, explain
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	N/A		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	Х		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	N/A		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

Contract Verification Review (Continued)

3.0 Data Quality Evaluation

Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1 Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2 Quantitation limit met for all samples	Х		
3.3 Accuracy a) Laboratory control sample accuracy reported and met for all samples		Х	ACETONE FAILED RECOVERY LIMITS FOR LCS/LCD 320-35856/5 & 320-35856/6
b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Х		
c) Matrix spike recovery data reported and met	N/A		
Replicate sample precision reported and met for all inorganic and radiochemistry samples	N/A		
b) Matrix spike duplicate RPD data reported and met for all organic samples	N/A		
Blank data a) Method or reagent blank data reported and met for all samples	х		
b) Sampling blank (e.g., field, trip, and equipment) data reported and met		Х	SEVERAL ANALYTES DETECTED AT LOW LEVELS IN FIELD BLANKS
3.6 Contractual qualifiers provided: "J"- estimated quantity; "B"- analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	Х		
3.7 Narrative addresses planchet flaming for gross alpha/beta	N/A		
3.8 Narrative included, correct, and complete	Х		
3.9 Second column confirmation data provided for methods 8330 (high	N/A		

Contract Verification Review (Continued)

4.0 Calibration and Validation Documentation

Item	Yes	No	Comments
4.1 GC/MS (8260 and 8270)			
a) 12-hour tune check provided	X	8	
b) Initial calibration provided	Х		
c) Continuing calibration provided	Х		
d) Internal standard performance data provided	Х		
e) Instrument run logs provided	Х		
4.2 GC/HPLC (8330, 8082, 9070A, and 8010)			
a) Initial calibration provided	N/A		
b) Continuing calibration provided	N/A		
c) Instrument run logs provided	N/A		
4.3 HRGC/HRMS (1668)			_
a) 12-hour tune check provided	N/A		
b) Initial calibration provided	N/A		
c) Continuing calibration provided	N/A		
d) Internal standard performance data provided	N/A		-
e) Labeled compound recovery data provided	N/A		

Contract Verification Review (Continued)

f) RRTs for samples and standards provided N/A g) Ion abundance ratios for samples and standards provided N/A h) Instrument run logs provided N/A 4.4 LC/MS/MS (6850) a) Initial calibration provided N/A b) Continuing calibration provided N/A c) CRI provided N/A d) Internal standard performance data provided N/A f) ICS provided (perchlorate only) N/A 4.5 Inorganics (metals) a) Initial calibration provided N/A b) Continuing calibration provided N/A c) ICP interference check sample data provided N/A d) ICP serial dilution provided N/A 4.6 Radiochemistry and General Chemistry a) Instrument run logs provided N/A 1.74 1.75 1.76 1.76 1.77 1.		
h) Instrument run logs provided A.4 LC/MS/MS (8850) a) Initial calibration provided N/A b) Continuing calibration provided N/A c) CRI provided N/A d) Internal standard performance data provided N/A e) Chlorine isotope ratios provided (perchlorate only) N/A f) ICS provided (perchlorate only) N/A 4.5 Inorganics (metals) a) Initial calibration provided N/A b) Continuing calibration provided N/A c) ICP interference check sample data provided N/A d) ICP serial dilution provided N/A 1.5 Radiochemistry and General Chemistry	f) RRTs for samples and standards provided	N/A
4.4 LC/MS/MS (6850) a) Initial calibration provided N/A b) Continuing calibration provided N/A c) CRI provided N/A d) Internal standard performance data provided N/A e) Chlorine isotope ratios provided (perchlorate only) N/A f) ICS provided (perchlorate only) N/A 4.5 Inorganics (metals) a) Initial calibration provided N/A b) Continuing calibration provided N/A c) ICP interference check sample data provided N/A d) ICP serial dilution provided N/A e) Instrument run logs provided N/A	g) lon abundance ratios for samples and standards provided	N/A
a) Initial calibration provided N/A b) Continuing calibration provided N/A c) CRI provided N/A d) Internal standard performance data provided N/A e) Chlorine isotope ratios provided (perchlorate only) N/A f) ICS provided (perchlorate only) N/A 4.5 Inorganics (metals) a) Initial calibration provided N/A b) Continuing calibration provided N/A c) ICP interference check sample data provided N/A d) ICP serial dilution provided N/A e) Instrument run logs provided N/A 4.6 Radiochemistry and General Chemistry	h) Instrument run logs provided	N/A
a) Initial calibration provided N/A b) Continuing calibration provided N/A c) CRI provided N/A d) Internal standard performance data provided N/A e) Chlorine isotope ratios provided (perchlorate only) N/A f) ICS provided (perchlorate only) N/A 4.5 Inorganics (metals) a) Initial calibration provided N/A b) Continuing calibration provided N/A c) ICP interference check sample data provided N/A d) ICP serial dilution provided N/A e) Instrument run logs provided N/A 4.6 Radiochemistry and General Chemistry	4.4 LC/MS/MS (6850)	
c) CRI provided N/A d) Internal standard performance data provided N/A e) Chlorine isotope ratios provided (perchlorate only) N/A f) ICS provided (perchlorate only) N/A 4.5 Inorganics (metals) a) Initial calibration provided N/A b) Continuing calibration provided N/A c) ICP interference check sample data provided N/A d) ICP serial dilution provided N/A e) Instrument run logs provided N/A 4.6 Radiochemistry and General Chemistry	W 45	N/A
d) Internal standard performance data provided e) Chlorine isotope ratios provided (perchlorate only) N/A f) ICS provided (perchlorate only) N/A 4.5 Inorganics (metals) a) Initial calibration provided N/A b) Continuing calibration provided N/A c) ICP interference check sample data provided N/A d) ICP serial dilution provided N/A e) Instrument run logs provided N/A 4.6 Radiochemistry and General Chemistry	b) Continuing calibration provided	N/A
e) Chlorine isotope ratios provided (perchlorate only) N/A f) ICS provided (perchlorate only) N/A 4.5 Inorganics (metals) a) Initial calibration provided N/A b) Continuing calibration provided N/A c) ICP interference check sample data provided N/A d) ICP serial dilution provided N/A e) Instrument run logs provided N/A 4.6 Radiochemistry and General Chemistry	c) CRI provided	N/A
f) ICS provided (perchlorate only) A.5 Inorganics (metals) a) Initial calibration provided N/A b) Continuing calibration provided N/A c) ICP interference check sample data provided N/A d) ICP serial dilution provided N/A e) Instrument run logs provided N/A A.6 Radiochemistry and General Chemistry	d) Internal standard performance data provided	N/A
4.5 Inorganics (metals) a) Initial calibration provided N/A b) Continuing calibration provided N/A c) ICP interference check sample data provided N/A d) ICP serial dilution provided N/A e) Instrument run logs provided N/A 4.6 Radiochemistry and General Chemistry	e) Chlorine isotope ratios provided (perchlorate only)	N/A
a) Initial calibration provided N/A b) Continuing calibration provided N/A c) ICP interference check sample data provided N/A d) ICP serial dilution provided N/A e) Instrument run logs provided N/A 4.6 Radiochemistry and General Chemistry	f) ICS provided (perchlorate only)	N/A
a) Initial calibration provided N/A b) Continuing calibration provided N/A c) ICP interference check sample data provided N/A d) ICP serial dilution provided N/A e) Instrument run logs provided N/A 4.6 Radiochemistry and General Chemistry	4.5 Inorganics (metals)	
c) ICP interference check sample data provided N/A d) ICP serial dilution provided N/A e) Instrument run logs provided N/A 4.6 Radiochemistry and General Chemistry	-	N/A
d) ICP serial dilution provided N/A e) Instrument run logs provided N/A 4.6 Radiochemistry and General Chemistry	b) Continuing calibration provided	N/A
e) Instrument run logs provided N/A 4.6 Radiochemistry and General Chemistry	c) ICP interference check sample data provided	N/A
4.6 Radiochemistry and General Chemistry	d) ICP serial dilution provided	N/A
	e) Instrument run logs provided	N/A
	4.6 Radiochemistry and General Chemistry	
	a) Instrument run logs provided	N/A

Contract Verification Review (Concluded)

5.0 Data Anomaly Report	5.0	Data	Anoma	ly	Report	Ċ
-------------------------	-----	------	--------------	----	--------	---

Item	Yes	No	Comments
5.1 DAR completed for monitoring and surveillance sample data	Х		
5.2 Problems or outliers noted	X		
5.3 Verification or reanalysis requested from lab		Х	

6.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted.

Sample/Fraction No.	Analysis	Problems/Comments/Resolutions

Were deficiencies unresolved? θ Yes X No			
Based on the review, this data package is complete.	X Yes	θ Νο	
If no, provide nonconformance report or correction request number	and	d date correction request was submitted: _	
Reviewed by: Date: Date: 2.28.2014 Were resolutions adequate and data package complete? θ Ye	 s θ No		
Closed by: Date:			

SOIL-GAS SAMPLING RESULTS CERTIFICATES OF ANALYSIS

Chemical Waste Landfill January 2014 – Soil-Gas Samples

Note: Certificates of Analysis are provided on compact disc only, for printed copies of this report.

Client: Sandia National Laboratories

Project/Site: CWL

Client Sample ID: 095129-001/CWL-UI1-40 Lab Sample ID: 320-5780-1

Date Collected: 01/16/14 09:53 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		130	26	ppb v/v			02/08/14 01:42	32
Benzyl chloride	ND		260	53	ppb v/v			02/08/14 01:42	32
Bromodichloromethane	ND		98	22	ppb v/v			02/08/14 01:42	32
Bromoform	ND		130	23	ppb v/v			02/08/14 01:42	32
Bromomethane	ND		260	110	ppb v/v			02/08/14 01:42	32
2-Butanone (MEK)	ND		260	65	ppb v/v			02/08/14 01:42	32
Carbon disulfide	ND		260	26	ppb v/v			02/08/14 01:42	32
Carbon tetrachloride	ND		260		ppb v/v			02/08/14 01:42	32
Chlorobenzene	ND		98		ppb v/v			02/08/14 01:42	32
Chloroethane	ND		260	100	ppb v/v			02/08/14 01:42	32
Chloroform	750		98	31	ppb v/v			02/08/14 01:42	32
Chloromethane	ND		260		ppb v/v			02/08/14 01:42	32
Dibromochloromethane	ND		130		ppb v/v			02/08/14 01:42	32
1,2-Dibromoethane (EDB)	ND		260		ppb v/v			02/08/14 01:42	32
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND ND		130		ppb v/v			02/08/14 01:42	32
									32
1,2-Dichlorobenzene	ND		130		ppb v/v			02/08/14 01:42	
1,3-Dichlorobenzene	ND		130		ppb v/v			02/08/14 01:42	32
1,4-Dichlorobenzene	ND		130		ppb v/v			02/08/14 01:42	32
Dichlorodifluoromethane	ND		130		ppb v/v			02/08/14 01:42	32
1,1-Dichloroethane	ND		98		ppb v/v			02/08/14 01:42	32
1,2-Dichloroethane	ND		260		ppb v/v			02/08/14 01:42	32
1,1-Dichloroethene	180	J	260		ppb v/v			02/08/14 01:42	32
cis-1,2-Dichloroethene	ND		130	29	ppb v/v			02/08/14 01:42	32
trans-1,2-Dichloroethene	ND		130	33	ppb v/v			02/08/14 01:42	32
1,2-Dichloropropane	ND		130	79	ppb v/v			02/08/14 01:42	32
cis-1,3-Dichloropropene	ND		130	34	ppb v/v			02/08/14 01:42	32
trans-1,3-Dichloropropene	ND		130	29	ppb v/v			02/08/14 01:42	32
Ethylbenzene	61	J	130	21	ppb v/v			02/08/14 01:42	32
4-Ethyltoluene	ND		130	61	ppb v/v			02/08/14 01:42	32
Hexachlorobutadiene	ND		660	140	ppb v/v			02/08/14 01:42	32
2-Hexanone	ND		130	29	ppb v/v			02/08/14 01:42	32
4-Methyl-2-pentanone (MIBK)	ND		130	44	ppb v/v			02/08/14 01:42	32
Methylene Chloride	47	J	130	24	ppb v/v			02/08/14 01:42	32
Styrene	ND		130	19	ppb v/v			02/08/14 01:42	32
1,1,2,2-Tetrachloroethane	ND		130	23	ppb v/v			02/08/14 01:42	32
Tetrachloroethene	2800		130		ppb v/v			02/08/14 01:42	32
Toluene	310		130		ppb v/v			02/08/14 01:42	32
1,1,2-Trichloro-1,2,2-trifluoroetha	730		130		ppb v/v			02/08/14 01:42	32
1,2,4-Trichlorobenzene	ND		660	140	ppb v/v			02/08/14 01:42	32
1,1,1-Trichloroethane	56	J	98		ppb v/v			02/08/14 01:42	32
1,1,2-Trichloroethane	ND		130		ppb v/v			02/08/14 01:42	32
Trichloroethene	4800		130		ppb v/v			02/08/14 01:42	32
Trichlorofluoromethane	180		130		ppb v/v			02/08/14 01:42	32
1,2,4-Trimethylbenzene	ND		260		ppb v/v			02/08/14 01:42	32
1,3,5-Trimethylbenzene	ND		130		ppb v/v			02/08/14 01:42	32
	ND							02/08/14 01:42	32
Vinyl acetate Vinyl chloride	ND ND		260 130		ppb v/v ppb v/v			02/08/14 01:42	32

TestAmerica Job ID: 320-5780-1

Client: Sandia National Laboratories

Project/Site: CWL

Toluene-d8 (Surr)

Client Sample ID: 095129-001/CWL-UI1-40 Lab Sample ID: 320-5780-1

Date Collected: 01/16/14 09:53

Matrix: Air

02/08/14 01:42

Lab Sample ID: 320-5780-2

328

TestAmerica Job ID: 320-5780-1

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Orga	nic Compounds i	in Ambient	Air (Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m,p-Xylene	260		260	33	ppb v/v			02/08/14 01:42	328
o-Xylene	110	J	130	18	ppb v/v			02/08/14 01:42	328
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130					02/08/14 01:42	328
1,2-Dichloroethane-d4 (Surr)	99		70 - 130					02/08/14 01:42	328

70 - 130

106

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	970	J	1600	57	ppb v/v			02/12/14 21:55	322
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130			-		02/12/14 21:55	322
1,2-Dichloroethane-d4 (Surr)	100		70 - 130					02/12/14 21:55	322
Toluene-d8 (Surr)	106		70 - 130					02/12/14 21:55	322

Client Sample ID: 095130-001/CWL-UI1-80

Date Collected: 01/16/14 09:57 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		130	26	ppb v/v			02/08/14 02:31	331
Benzyl chloride	ND		260	54	ppb v/v			02/08/14 02:31	331
Bromodichloromethane	ND		99	22	ppb v/v			02/08/14 02:31	331
Bromoform	ND		130	23	ppb v/v			02/08/14 02:31	331
Bromomethane	ND		260	110	ppb v/v			02/08/14 02:31	331
2-Butanone (MEK)	ND		260	66	ppb v/v			02/08/14 02:31	331
Carbon disulfide	ND		260	26	ppb v/v			02/08/14 02:31	331
Carbon tetrachloride	ND		260	21	ppb v/v			02/08/14 02:31	331
Chlorobenzene	ND		99	21	ppb v/v			02/08/14 02:31	331
Chloroethane	ND		260	100	ppb v/v			02/08/14 02:31	331
Chloroform	580		99	31	ppb v/v			02/08/14 02:31	331
Chloromethane	ND		260	65	ppb v/v			02/08/14 02:31	331
Dibromochloromethane	ND		130	26	ppb v/v			02/08/14 02:31	331
1,2-Dibromoethane (EDB)	ND		260	25	ppb v/v			02/08/14 02:31	331
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		130	51	ppb v/v			02/08/14 02:31	331
1,2-Dichlorobenzene	ND		130	43	ppb v/v			02/08/14 02:31	331
1,3-Dichlorobenzene	ND		130	36	ppb v/v			02/08/14 02:31	331
1,4-Dichlorobenzene	ND		130	49	ppb v/v			02/08/14 02:31	331
Dichlorodifluoromethane	ND		130	48	ppb v/v			02/08/14 02:31	331
1,1-Dichloroethane	ND		99	24	ppb v/v			02/08/14 02:31	331
1,2-Dichloroethane	39	J	260	29	ppb v/v			02/08/14 02:31	331
1,1-Dichloroethene	320		260	43	ppb v/v			02/08/14 02:31	331
cis-1,2-Dichloroethene	ND		130	29	ppb v/v			02/08/14 02:31	331
trans-1,2-Dichloroethene	ND		130	33	ppb v/v			02/08/14 02:31	331
1,2-Dichloropropane	ND		130	79	ppb v/v			02/08/14 02:31	331

TestAmerica Sacramento

Client: Sandia National Laboratories

Project/Site: CWL

Client Sample ID: 095130-001/CWL-UI1-80 Lab Sample ID: 320-5780-2

Date Collected: 01/16/14 09:57 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,3-Dichloropropene	ND		130	34	ppb v/v			02/08/14 02:31	331
trans-1,3-Dichloropropene	ND		130	29	ppb v/v			02/08/14 02:31	331
Ethylbenzene	54	J	130	21	ppb v/v			02/08/14 02:31	331
4-Ethyltoluene	ND		130	62	ppb v/v			02/08/14 02:31	331
Hexachlorobutadiene	ND		660	140	ppb v/v			02/08/14 02:31	331
2-Hexanone	ND		130	29	ppb v/v			02/08/14 02:31	331
4-Methyl-2-pentanone (MIBK)	ND		130	45	ppb v/v			02/08/14 02:31	331
Methylene Chloride	110	J	130	24	ppb v/v			02/08/14 02:31	331
Styrene	ND		130	20	ppb v/v			02/08/14 02:31	331
1,1,2,2-Tetrachloroethane	ND		130	23	ppb v/v			02/08/14 02:31	331
Tetrachloroethene	950		130	17	ppb v/v			02/08/14 02:31	331
Toluene	280		130	17	ppb v/v			02/08/14 02:31	331
1,1,2-Trichloro-1,2,2-trifluoroetha	870		130	54	ppb v/v			02/08/14 02:31	331
ne									
1,2,4-Trichlorobenzene	ND		660		ppb v/v			02/08/14 02:31	331
1,1,1-Trichloroethane	52	J	99	22	ppb v/v			02/08/14 02:31	331
1,1,2-Trichloroethane	ND		130	22	ppb v/v			02/08/14 02:31	331
Trichloroethene	6300		130	35	ppb v/v			02/08/14 02:31	331
Trichlorofluoromethane	210		130	65	ppb v/v			02/08/14 02:31	331
1,2,4-Trimethylbenzene	ND		260	54	ppb v/v			02/08/14 02:31	331
1,3,5-Trimethylbenzene	ND		130	41	ppb v/v			02/08/14 02:31	331
Vinyl acetate	ND		260	48	ppb v/v			02/08/14 02:31	331
Vinyl chloride	ND		130	40	ppb v/v			02/08/14 02:31	331
m,p-Xylene	240	J	260	33	ppb v/v			02/08/14 02:31	331
o-Xylene	83	J	130	18	ppb v/v			02/08/14 02:31	331

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107	70 - 130		02/08/14 02:31	331
1,2-Dichloroethane-d4 (Surr)	98	70 - 130		02/08/14 02:31	331
Toluene-d8 (Surr)	105	70 - 130		02/08/14 02:31	331

	Method: TO-15	 Volatile Or 	ganic Com	pounds in	Ambient	Air - RA
--	---------------	---------------------------------	-----------	-----------	----------------	----------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	980	J	1700	59	ppb v/v			02/12/14 22:44	331
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		70 - 130			_		02/12/14 22:44	331
1,2-Dichloroethane-d4 (Surr)	98		70 - 130					02/12/14 22:44	331
Toluene-d8 (Surr)	107		70 - 130					02/12/14 22:44	331

Client Sample ID: 095131-001/CWL-UI1-120

Lab Sample ID: 320-5780-3 Date Collected: 01/16/14 10:02 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Organ	nic Compounds in Ambi	ent Air						
Analyte	Result Qualifier	r RL I	/IDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	130	26	ppb v/v			02/08/14 03:19	334
Benzyl chloride	ND	270	54	ppb v/v			02/08/14 03:19	334
Bromodichloromethane	ND	100	22	ppb v/v			02/08/14 03:19	334

TestAmerica Sacramento

TestAmerica Job ID: 320-5780-1

Client: Sandia National Laboratories TestAmerica Job ID: 320-5780-1

Project/Site: CWL

Client Sample ID: 095131-001/CWL-UI1-120

Lab Sample ID: 320-5780-3 Date Collected: 01/16/14 10:02 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Bromoform	ND		130	23	ppb v/v			02/08/14 03:19	33
Bromomethane	ND		270	110	ppb v/v			02/08/14 03:19	33
2-Butanone (MEK)	ND		270	66	ppb v/v			02/08/14 03:19	33
Carbon disulfide	ND		270	26	ppb v/v			02/08/14 03:19	33
Carbon tetrachloride	ND		270	21	ppb v/v			02/08/14 03:19	33
Chlorobenzene	ND		100		ppb v/v			02/08/14 03:19	33
Chloroethane	ND		270	100	ppb v/v			02/08/14 03:19	33
Chloroform	450		100	32	ppb v/v			02/08/14 03:19	33
Chloromethane	ND		270		ppb v/v			02/08/14 03:19	33
Dibromochloromethane	ND		130		ppb v/v			02/08/14 03:19	33
1,2-Dibromoethane (EDB)	ND		270		ppb v/v			02/08/14 03:19	33
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		130		ppb v/v			02/08/14 03:19	33
1,2-Dichlorobenzene	ND		130		ppb v/v			02/08/14 03:19	33
1,3-Dichlorobenzene	ND		130		ppb v/v			02/08/14 03:19	33
1,4-Dichlorobenzene	ND		130		ppb v/v			02/08/14 03:19	33
Dichlorodifluoromethane	ND		130		ppb v/v			02/08/14 03:19	33
1,1-Dichloroethane	ND		100		ppb v/v			02/08/14 03:19	33
1,2-Dichloroethane	69	a.	270		ppb v/v			02/08/14 03:19	33
1,1-Dichloroethene	420		270		ppb v/v			02/08/14 03:19	33
cis-1,2-Dichloroethene	ND		130	30	ppb v/v			02/08/14 03:19	33
trans-1,2-Dichloroethene	ND		130		ppb v/v			02/08/14 03:19	33
1,2-Dichloropropane	ND		130					02/08/14 03:19	33
cis-1,3-Dichloropropene	ND		130		ppb v/v			02/08/14 03:19	33
trans-1,3-Dichloropropene	ND		130					02/08/14 03:19	33
Ethylbenzene	60	<mark>.</mark>	130		ppb v/v			02/08/14 03:19	33
4-Ethyltoluene	ND.	•	130		ppb v/v			02/08/14 03:19	33
Hexachlorobutadiene	ND		670		ppb v/v			02/08/14 03:19	33
2-Hexanone	ND		130		ppb v/v			02/08/14 03:19	33
4-Methyl-2-pentanone (MIBK)	ND		130		ppb v/v			02/08/14 03:19	33
			130		ppb v/v			02/08/14 03:19	33
Methylene Chloride	240		130					02/08/14 03:19	33
Styrene 1,1,2,2-Tetrachloroethane	27 ND	J	130		ppb v/v ppb v/v			02/08/14 03:19	33
Tetrachloroethene	670		130		ppb v/v			02/08/14 03:19	33
Toluene	320		130		ppb v/v			02/08/14 03:19	33
1,1,2-Trichloro-1,2,2-trifluoroetha	1000		130	54	ppb v/v			02/08/14 03:19	33
ne 1,2,4-Trichlorobenzene	ND		670	140	ppb v/v			02/08/14 03:19	33
1,1,1-Trichloroethane	55	<u>.</u>	100		ppb v/v			02/08/14 03:19	33
1,1,2-Trichloroethane	ND.	•	130		ppb v/v			02/08/14 03:19	33
Trichloroethene	7600		130		ppb v/v			02/08/14 03:19	33
Trichlorofluoromethane	240		130		ppb v/v			02/08/14 03:19	33
1,2,4-Trimethylbenzene	ND.		270		ppb v/v			02/08/14 03:19	33
1,3,5-Trimethylbenzene	ND ND		130		ppb v/v			02/08/14 03:19	33
Vinyl acetate	ND ND		270		ppb v/v			02/08/14 03:19	33
Vinyl acetate Vinyl chloride	ND ND		130						33
•			270		ppb v/v			02/08/14 03:19 02/08/14 03:19	33
m,p-Xylene o-Xylene	260 84		130		ppb v/v			02/08/14 03:19	33

Client: Sandia National Laboratories

Project/Site: CWL

Client Sample ID: 095131-001/CWL-UI1-120 Lab Sample ID: 320-5780-3

Date Collected: 01/16/14 10:02

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Lab Sample ID: 320-5780-4

Matrix: Air

TestAmerica Job ID: 320-5780-1

Matrix: Air

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106	70 - 130		02/08/14 03:19	334
1,2-Dichloroethane-d4 (Surr)	100	70 - 130		02/08/14 03:19	334
Toluene-d8 (Surr)	104	70 - 130		02/08/14 03:19	334
_					

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	900	J	1700	59	ppb v/v			02/12/14 23:33	334
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130			-		02/12/14 23:33	334
1,2-Dichloroethane-d4 (Surr)	100		70 - 130					02/12/14 23:33	334
Toluene-d8 (Surr)	106		70 - 130					02/12/14 23:33	334

Client Sample ID: 095132-001/CWL-UI1-120

Date Collected: 01/16/14 10:04

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	7.3	J	130	4.6	ppb v/v			02/10/14 00:15	25.6
Benzene	6.0	J	10	2.0	ppb v/v			02/10/14 00:15	25.6
Benzyl chloride	ND		20	4.2	ppb v/v			02/10/14 00:15	25.6
Bromodichloromethane	ND		7.7	1.7	ppb v/v			02/10/14 00:15	25.6
Bromoform	ND		10	1.8	ppb v/v			02/10/14 00:15	25.6
Bromomethane	ND		20	8.6	ppb v/v			02/10/14 00:15	25.6
2-Butanone (MEK)	ND		20	5.1	ppb v/v			02/10/14 00:15	25.6
Carbon disulfide	ND		20	2.0	ppb v/v			02/10/14 00:15	25.6
Carbon tetrachloride	25		20	1.6	ppb v/v			02/10/14 00:15	25.6
Chlorobenzene	ND		7.7	1.6	ppb v/v			02/10/14 00:15	25.6
Chloroethane	ND		20	7.9	ppb v/v			02/10/14 00:15	25.6
Chloroform	490		7.7	2.4	ppb v/v			02/10/14 00:15	25.6
Chloromethane	ND		20	5.0	ppb v/v			02/10/14 00:15	25.6
Dibromochloromethane	ND		10	2.0	ppb v/v			02/10/14 00:15	25.6
1,2-Dibromoethane (EDB)	7.9	J	20	1.9	ppb v/v			02/10/14 00:15	25.6
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		10	4.0	ppb v/v			02/10/14 00:15	25.6
1,2-Dichlorobenzene	12		10	3.3	ppb v/v			02/10/14 00:15	25.6
1,3-Dichlorobenzene	ND		10	2.8	ppb v/v			02/10/14 00:15	25.6
1,4-Dichlorobenzene	ND		10	3.8	ppb v/v			02/10/14 00:15	25.6
Dichlorodifluoromethane	46		10	3.7	ppb v/v			02/10/14 00:15	25.6
1,1-Dichloroethane	18		7.7	1.8	ppb v/v			02/10/14 00:15	25.6
1,2-Dichloroethane	38		20	2.3	ppb v/v			02/10/14 00:15	25.6
1,1-Dichloroethene	490		20	3.3	ppb v/v			02/10/14 00:15	25.6
cis-1,2-Dichloroethene	ND		10	2.3	ppb v/v			02/10/14 00:15	25.6
trans-1,2-Dichloroethene	ND		10	2.6	ppb v/v			02/10/14 00:15	25.6
1,2-Dichloropropane	84		10	6.1	ppb v/v			02/10/14 00:15	25.6
cis-1,3-Dichloropropene	ND		10	2.7	ppb v/v			02/10/14 00:15	25.6
trans-1,3-Dichloropropene	ND		10	2.3	ppb v/v			02/10/14 00:15	25.6
Ethylbenzene	ND		10	1.6	ppb v/v			02/10/14 00:15	25.6
4-Ethyltoluene	ND		10	4.8	ppb v/v			02/10/14 00:15	25.6

TestAmerica Sacramento

Client: Sandia National Laboratories

Project/Site: CWL

Vinyl chloride

m,p-Xylene

o-Xylene

Client Sample ID: 095132-001/CWL-UI1-120 Lab Sample ID: 320-5780-4

Date Collected: 01/16/14 10:04 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hexachlorobutadiene	ND		51	11	ppb v/v			02/10/14 00:15	25.6
2-Hexanone	ND		10	2.2	ppb v/v			02/10/14 00:15	25.6
4-Methyl-2-pentanone (MIBK)	ND		10	3.5	ppb v/v			02/10/14 00:15	25.6
Methylene Chloride	230		10	1.8	ppb v/v			02/10/14 00:15	25.6
Styrene	ND		10	1.5	ppb v/v			02/10/14 00:15	25.6
1,1,2,2-Tetrachloroethane	ND		10	1.8	ppb v/v			02/10/14 00:15	25.6
Tetrachloroethene	790		10	1.3	ppb v/v			02/10/14 00:15	25.6
Toluene	8.0	J	10	1.3	ppb v/v			02/10/14 00:15	25.6
1,1,2-Trichloro-1,2,2-trifluoroetha ne	1000		10	4.2	ppb v/v			02/10/14 00:15	25.6
1,2,4-Trichlorobenzene	ND		51	11	ppb v/v			02/10/14 00:15	25.6
1,1,1-Trichloroethane	57		7.7	1.7	ppb v/v			02/10/14 00:15	25.6
1,1,2-Trichloroethane	7.0	J	10	1.7	ppb v/v			02/10/14 00:15	25.6
Trichlorofluoromethane	300		10	5.0	ppb v/v			02/10/14 00:15	25.6
1,2,4-Trimethylbenzene	ND		20	4.1	ppb v/v			02/10/14 00:15	25.6
1,3,5-Trimethylbenzene	ND		10	3.2	ppb v/v			02/10/14 00:15	25.6
Vinyl acetate	ND		20	3.7	ppb v/v			02/10/14 00:15	25.6

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102	70 - 130		02/10/14 00:15	25.6
1,2-Dichloroethane-d4 (Surr)	99	70 - 130		02/10/14 00:15	25.6
Toluene-d8 (Surr)	108	70 - 130		02/10/14 00:15	25.6

10

20

10

3.1 ppb v/v

2.6 ppb v/v

1.4 ppb v/v

Method: TO-15 - Volatile Organic Compounds in Ambient Air - DL

ND

ND

4.2 J

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	7600	130	34	ppb v/v			02/13/14 00:21	320
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130		02/13/14 00:21	320
1,2-Dichloroethane-d4 (Surr)	100		70 - 130		02/13/14 00:21	320
Toluene-d8 (Surr)	107		70 - 130		02/13/14 00:21	320

Client Sample ID: 095133-001/CWL-UI1-FB1

Date Collected: 01/16/14 10:06 Matrix: Air Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	0.40	0.079	ppb v/v			02/08/14 05:00	1
Benzyl chloride	ND	0.80	0.16	ppb v/v			02/08/14 05:00	1
Bromodichloromethane	ND	0.30	0.066	ppb v/v			02/08/14 05:00	1
Bromoform	ND	0.40	0.070	ppb v/v			02/08/14 05:00	1
Bromomethane	ND	0.80	0.34	ppb v/v			02/08/14 05:00	1
2-Butanone (MEK)	ND	0.80	0.20	ppb v/v			02/08/14 05:00	1
Carbon disulfide	ND	0.80	0.078	ppb v/v			02/08/14 05:00	1
Carbon tetrachloride	ND	0.80	0.064	ppb v/v			02/08/14 05:00	1

TestAmerica Sacramento

TestAmerica Job ID: 320-5780-1

02/10/14 00:15

02/10/14 00:15

02/10/14 00:15

Lab Sample ID: 320-5780-5

25.6

25.6

25.6

Client: Sandia National Laboratories

Project/Site: CWL

Toluene-d8 (Surr)

Client Sample ID: 095133-001/CWL-UI1-FB1

Lab Sample ID: 320-5780-5 Date Collected: 01/16/14 10:06 Matrix: Air

Date Received: 01/22/14 09:15

Method: TO-15 - Volatile Organic	Compounds i	n Ambient	Air (Continued))					
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorobenzene	ND		0.30	0.064	ppb v/v			02/08/14 05:00	1
Chloroethane	ND		0.80	0.31	ppb v/v			02/08/14 05:00	1
Chloroform	ND		0.30	0.095	ppb v/v			02/08/14 05:00	1
Chloromethane	ND		0.80	0.20	ppb v/v			02/08/14 05:00	1
Dibromochloromethane	ND		0.40	0.079	ppb v/v			02/08/14 05:00	1
1,2-Dibromoethane (EDB)	ND		0.80	0.075	ppb v/v			02/08/14 05:00	1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.40	0.16	ppb v/v			02/08/14 05:00	1
1,2-Dichlorobenzene	ND		0.40	0.13	ppb v/v			02/08/14 05:00	1
1,3-Dichlorobenzene	ND		0.40	0.11	ppb v/v			02/08/14 05:00	1
1,4-Dichlorobenzene	ND		0.40	0.15	ppb v/v			02/08/14 05:00	1
Dichlorodifluoromethane	ND		0.40	0.15	ppb v/v			02/08/14 05:00	1
1,1-Dichloroethane	ND		0.30	0.072	ppb v/v			02/08/14 05:00	1
1,2-Dichloroethane	ND		0.80	0.088	ppb v/v			02/08/14 05:00	1
1,1-Dichloroethene	ND		0.80	0.13	ppb v/v			02/08/14 05:00	1
cis-1,2-Dichloroethene	ND		0.40	0.089	ppb v/v			02/08/14 05:00	1
trans-1,2-Dichloroethene	ND		0.40	0.10				02/08/14 05:00	1
1,2-Dichloropropane	ND		0.40		ppb v/v			02/08/14 05:00	1
cis-1,3-Dichloropropene	ND		0.40					02/08/14 05:00	1
trans-1,3-Dichloropropene	ND		0.40		ppb v/v			02/08/14 05:00	1
Ethylbenzene	0.082		0.40		ppb v/v			02/08/14 05:00	1
4-Ethyltoluene	ND		0.40		ppb v/v			02/08/14 05:00	1
Hexachlorobutadiene	ND		2.0		ppb v/v			02/08/14 05:00	. 1
2-Hexanone	ND		0.40		ppb v/v			02/08/14 05:00	
4-Methyl-2-pentanone (MIBK)	ND		0.40		ppb v/v			02/08/14 05:00	1
Methylene Chloride	ND		0.40		ppb v/v			02/08/14 05:00	1
	ND		0.40		ppb v/v			02/08/14 05:00	' 1
Styrene	ND ND		0.40						
1,1,2,2-Tetrachloroethane					ppb v/v			02/08/14 05:00	1
Tetrachloroethene	ND		0.40		ppb v/v			02/08/14 05:00	
Toluene	0.45		0.40		ppb v/v			02/08/14 05:00	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.40		ppb v/v			02/08/14 05:00	1
1,2,4-Trichlorobenzene	ND		2.0		ppb v/v			02/08/14 05:00	
1,1,1-Trichloroethane	ND		0.30		ppb v/v			02/08/14 05:00	1
1,1,2-Trichloroethane	ND		0.40	0.067	ppb v/v			02/08/14 05:00	1
Trichloroethene	ND		0.40	0.11	ppb v/v			02/08/14 05:00	
Trichlorofluoromethane	ND		0.40	0.20	ppb v/v			02/08/14 05:00	1
1,2,4-Trimethylbenzene	ND		0.80	0.16	ppb v/v			02/08/14 05:00	1
1,3,5-Trimethylbenzene	ND		0.40	0.13	ppb v/v			02/08/14 05:00	1
Vinyl acetate	ND		0.80	0.15	ppb v/v			02/08/14 05:00	1
Vinyl chloride	ND		0.40	0.12	ppb v/v			02/08/14 05:00	1
m,p-Xylene	0.19	J	0.80	0.10	ppb v/v			02/08/14 05:00	1
o-Xylene	0.068	J	0.40	0.054	ppb v/v			02/08/14 05:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130			_		02/08/14 05:00	1
1,2-Dichloroethane-d4 (Surr)	97		70 - 130					02/08/14 05:00	1

02/08/14 05:00

TestAmerica Job ID: 320-5780-1

70 - 130

102

Client: Sandia National Laboratories

Project/Site: CWL

Client Sample ID: 095133-001/CWL-UI1-FB1 Lab Sample ID: 320-5780-5

Date Collected: 01/16/14 10:06 East Sample 1B. 320-3700-3

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	1.1	J	5.0	0.18	ppb v/v			02/13/14 01:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130			-		02/13/14 01:13	1
1,2-Dichloroethane-d4 (Surr)	100		70 - 130					02/13/14 01:13	1
Toluene-d8 (Surr)	105		70 - 130					02/13/14 01:13	1

Client Sample ID: 095134-001/CWL-UI2-36

Date Collected: 01/16/14 10:22 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	130	26	ppb v/v			02/08/14 05:48	325
Benzyl chloride	ND	260	53	ppb v/v			02/08/14 05:48	325
Bromodichloromethane	ND	98	21	ppb v/v			02/08/14 05:48	325
Bromoform	ND	130	23	ppb v/v			02/08/14 05:48	325
Bromomethane	ND	260	110	ppb v/v			02/08/14 05:48	325
2-Butanone (MEK)	ND	260	65	ppb v/v			02/08/14 05:48	325
Carbon disulfide	ND	260	25	ppb v/v			02/08/14 05:48	325
Carbon tetrachloride	ND	260	21	ppb v/v			02/08/14 05:48	325
Chlorobenzene	ND	98	21	ppb v/v			02/08/14 05:48	325
Chloroethane	ND	260	100	ppb v/v			02/08/14 05:48	325
Chloroform	510	98	31	ppb v/v			02/08/14 05:48	325
Chloromethane	ND	260	64	ppb v/v			02/08/14 05:48	325
Dibromochloromethane	ND	130	26	ppb v/v			02/08/14 05:48	325
1,2-Dibromoethane (EDB)	ND	260	24	ppb v/v			02/08/14 05:48	325
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	130	50	ppb v/v			02/08/14 05:48	325
1,2-Dichlorobenzene	ND	130	42	ppb v/v			02/08/14 05:48	325
1,3-Dichlorobenzene	ND	130	36	ppb v/v			02/08/14 05:48	325
1,4-Dichlorobenzene	ND	130	48	ppb v/v			02/08/14 05:48	325
Dichlorodifluoromethane	ND	130	47	ppb v/v			02/08/14 05:48	325
1,1-Dichloroethane	ND	98	23	ppb v/v			02/08/14 05:48	325
1,2-Dichloroethane	ND	260	29	ppb v/v			02/08/14 05:48	325
1,1-Dichloroethene	ND	260	42	ppb v/v			02/08/14 05:48	325
cis-1,2-Dichloroethene	ND	130	29	ppb v/v			02/08/14 05:48	325
trans-1,2-Dichloroethene	ND	130	33	ppb v/v			02/08/14 05:48	325
1,2-Dichloropropane	ND	130	78	ppb v/v			02/08/14 05:48	325
cis-1,3-Dichloropropene	ND	130	34	ppb v/v			02/08/14 05:48	325
trans-1,3-Dichloropropene	ND	130	29	ppb v/v			02/08/14 05:48	325
Ethylbenzene	55 J	130	20	ppb v/v			02/08/14 05:48	325
4-Ethyltoluene	ND	130	61	ppb v/v			02/08/14 05:48	325
Hexachlorobutadiene	ND	650	140	ppb v/v			02/08/14 05:48	325
2-Hexanone	ND	130	28	ppb v/v			02/08/14 05:48	325
4-Methyl-2-pentanone (MIBK)	ND	130	44	ppb v/v			02/08/14 05:48	325
Methylene Chloride	50 J	130	23	ppb v/v			02/08/14 05:48	325
Styrene	ND	130	19	ppb v/v			02/08/14 05:48	325
1,1,2,2-Tetrachloroethane	ND	130	22	ppb v/v			02/08/14 05:48	325

TestAmerica Sacramento

TestAmerica Job ID: 320-5780-1

Lab Sample ID: 320-5780-6

Client: Sandia National Laboratories

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Vinyl acetate

Vinyl chloride

Toluene-d8 (Surr)

Project/Site: CWL

Client Sample ID: 095134-001/CWL-UI2-36 Lab Sample ID: 320-5780-6 Date Collected: 01/16/14 10:22 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Organic O	Compounds in		r (Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	130		130	17	ppb v/v			02/08/14 05:48	325
Toluene	280		130	17	ppb v/v			02/08/14 05:48	325
1,1,2-Trichloro-1,2,2-trifluoroetha	480		130	53	ppb v/v			02/08/14 05:48	325
ne									
1,2,4-Trichlorobenzene	ND		650	140	ppb v/v			02/08/14 05:48	325
1,1,1-Trichloroethane	33	J	98	21	ppb v/v			02/08/14 05:48	325
1,1,2-Trichloroethane	ND		130	22	ppb v/v			02/08/14 05:48	325
Trichloroethene	2800		130	34	ppb v/v			02/08/14 05:48	325
Trichlorofluoromethane	130		130	64	ppb v/v			02/08/14 05:48	325

m,p-Xylene	250	J	260	33 ppb v/v		02/08/14 05:48	325
o-Xylene	87	J	130	18 ppb v/v		02/08/14 05:48	325
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Surrogate 4-Bromofluorobenzene (Surr)		Qualifier	70 - 130		Prepared	Analyzed 02/08/14 05:48	Dil Fac

70 - 130

260

130

260

130

53 ppb v/v

41 ppb v/v

47 ppb v/v

39 ppb v/v

Method: TO-15 - Volatile Organic Co	mpounds i	n Ambient Air	' - RA						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	280	J	430	15	ppb v/v			02/10/14 01:04	86.7
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Guiroguio	70110001019	Quanno	2		rreparea	rinaryzou	<i>Dir i</i> 40
4-Bromofluorobenzene (Surr)	107		70 - 130	_		02/10/14 01:04	86.7
1,2-Dichloroethane-d4 (Surr)	100		70 - 130			02/10/14 01:04	86.7
Toluene-d8 (Surr)	105		70 - 130			02/10/14 01:04	86.7

Client Sample ID: 095135-001/CWL-UI2-76

ND

ND

ND

ND

ND

104

Date Collected: 01/16/14 10:27 Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Dibromochloromethane

Method: TO-15 - Volatile Organic Compounds in Ambient Air

Analyte Result Qualifier RLMDL Unit Prepared Analyzed Dil Fac ND 120 02/08/14 06:36 Benzene 24 ppb v/v 306 240 Benzyl chloride ND ppb v/v 02/08/14 06:36 306 Bromodichloromethane ND 92 20 ppb v/v 02/08/14 06:36 306 Bromoform ND 120 21 ppb v/v 02/08/14 06:36 306 ND 240 306 Bromomethane 100 ppb v/v 02/08/14 06:36 2-Butanone (MEK) ND 240 61 ppb v/v 02/08/14 06:36 306 ND Carbon disulfide 240 24 ppb v/v 306 02/08/14 06:36 ND 240 Carbon tetrachloride 20 ppb v/v 02/08/14 06:36 306 Chlorobenzene ND 92 20 ppb v/v 02/08/14 06:36 306 Chloroethane ND 240 94 ppb v/v 02/08/14 06:36 306 Chloroform 520 92 29 ppb v/v 02/08/14 06:36 306 Chloromethane ND 240 306 60 ppb v/v 02/08/14 06:36

TestAmerica Sacramento

02/08/14 06:36

TestAmerica Job ID: 320-5780-1

02/08/14 05:48

02/08/14 05:48

02/08/14 05:48

02/08/14 05:48

02/08/14 05:48

Lab Sample ID: 320-5780-7

325

325

325

325

325

Matrix: Air

120

24 ppb v/v

306

Client: Sandia National Laboratories

Project/Site: CWL

Lab Sample ID: 320-5780-7

Client Sample ID: 095135-001/CWL-UI2-76 Date Collected: 01/16/14 10:27 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,2-Dibromoethane (EDB)	ND		240	23	ppb v/v			02/08/14 06:36	30
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		120	47	ppb v/v			02/08/14 06:36	30
1,2-Dichlorobenzene	ND		120	40	ppb v/v			02/08/14 06:36	30
1,3-Dichlorobenzene	ND		120	34	ppb v/v			02/08/14 06:36	30
1,4-Dichlorobenzene	ND		120	46	ppb v/v			02/08/14 06:36	30
Dichlorodifluoromethane	ND		120	44	ppb v/v			02/08/14 06:36	30
1,1-Dichloroethane	ND		92	22	ppb v/v			02/08/14 06:36	30
1,2-Dichloroethane	33	J	240	27	ppb v/v			02/08/14 06:36	30
1,1-Dichloroethene	91	J	240	39	ppb v/v			02/08/14 06:36	30
cis-1,2-Dichloroethene	ND		120	27	ppb v/v			02/08/14 06:36	30
trans-1,2-Dichloroethene	ND		120	31	ppb v/v			02/08/14 06:36	30
1,2-Dichloropropane	ND		120	73	ppb v/v			02/08/14 06:36	30
cis-1,3-Dichloropropene	ND		120	32	ppb v/v			02/08/14 06:36	30
trans-1,3-Dichloropropene	ND		120		ppb v/v			02/08/14 06:36	30
Ethylbenzene	57	J	120		ppb v/v			02/08/14 06:36	30
4-Ethyltoluene	ND	-	120		ppb v/v			02/08/14 06:36	30
Hexachlorobutadiene	ND		610					02/08/14 06:36	30
2-Hexanone	ND		120		ppb v/v			02/08/14 06:36	30
4-Methyl-2-pentanone (MIBK)	ND		120		ppb v/v			02/08/14 06:36	30
Methylene Chloride	42	1	120		ppb v/v			02/08/14 06:36	30
	23		120		ppb v/v			02/08/14 06:36	30
Styrene 1,1,2,2-Tetrachloroethane	ND	3	120		ppb v/v			02/08/14 06:36	30
			120		ppb v/v			02/08/14 06:36	30
Tetrachloroethene	140		120						30
Toluene	310		120		ppb v/v			02/08/14 06:36	30
1,1,2-Trichloro-1,2,2-trifluoroetha	610		120	50	ppb v/v			02/08/14 06:36	30
ne 1,2,4-Trichlorobenzene	ND		610	130	ppb v/v			02/08/14 06:36	30
1,1,1-Trichloroethane	28		92		ppb v/v			02/08/14 06:36	30
1,1,2-Trichloroethane	ND		120		ppb v/v			02/08/14 06:36	30
Trichloroethene	3700		120		ppb v/v			02/08/14 06:36	30
Trichlorofluoromethane	150		120		ppb v/v			02/08/14 06:36	30
1,2,4-Trimethylbenzene	ND		240		ppb v/v			02/08/14 06:36	30
•	ND ND		120					02/08/14 06:36	30
1,3,5-Trimethylbenzene					ppb v/v				30
Vinyl ablasida	ND		240		ppb v/v			02/08/14 06:36	
Vinyl chloride	ND		120		ppb v/v			02/08/14 06:36	30
m,p-Xylene	250		240		ppb v/v			02/08/14 06:36	30
o-Xylene	82	J	120	17	ppb v/v			02/08/14 06:36	30
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	108		70 - 130			=		02/08/14 06:36	30
1,2-Dichloroethane-d4 (Surr)	100		70 - 130					02/08/14 06:36	30
Toluene-d8 (Surr)	105		70 - 130					02/08/14 06:36	30
Method: TO-15 - Volatile Organic	: Compounds i	n Ambient A	Air - RA						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	300	J	490	17	ppb v/v			02/10/14 01:54	9
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	107		70 - 130			-		02/10/14 01:54	9

TestAmerica Job ID: 320-5780-1

Client: Sandia National Laboratories TestAmerica Job ID: 320-5780-1

Project/Site: CWL

Client Sample ID: 095135-001/CWL-UI2-76

Lab Sample ID: 320-5780-7

Matrix: Air

Date Collected: 01/16/14 10:27

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Organic Compounds in Ambient Air - RA (Continued)

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		70 - 130	_		02/10/14 01:54	98
Toluene-d8 (Surr)	107		70 - 130			02/10/14 01:54	98

Date Collected: 01/16/14 10:30 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		130	26	ppb v/v			02/08/14 07:24	32
Benzyl chloride	ND		260	53	ppb v/v			02/08/14 07:24	32
Bromodichloromethane	ND		98	21	ppb v/v			02/08/14 07:24	32
Bromoform	ND		130	23	ppb v/v			02/08/14 07:24	32
Bromomethane	ND		260	110	ppb v/v			02/08/14 07:24	32
2-Butanone (MEK)	ND		260	65	ppb v/v			02/08/14 07:24	32
Carbon disulfide	ND		260	25	ppb v/v			02/08/14 07:24	32
Carbon tetrachloride	25	J	260	21	ppb v/v			02/08/14 07:24	32
Chlorobenzene	ND		98	21	ppb v/v			02/08/14 07:24	32
Chloroethane	ND		260	100	ppb v/v			02/08/14 07:24	32
Chloroform	570		98	31	ppb v/v			02/08/14 07:24	32
Chloromethane	ND		260	64	ppb v/v			02/08/14 07:24	32
Dibromochloromethane	ND		130	26	ppb v/v			02/08/14 07:24	32
1,2-Dibromoethane (EDB)	ND		260	24	ppb v/v			02/08/14 07:24	32
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		130	50	ppb v/v			02/08/14 07:24	32
1,2-Dichlorobenzene	ND		130	42	ppb v/v			02/08/14 07:24	32
1,3-Dichlorobenzene	ND		130	36	ppb v/v			02/08/14 07:24	32
1,4-Dichlorobenzene	ND		130	48	ppb v/v			02/08/14 07:24	32
Dichlorodifluoromethane	ND		130	47	ppb v/v			02/08/14 07:24	32
1,1-Dichloroethane	ND		98	23	ppb v/v			02/08/14 07:24	32
1,2-Dichloroethane	44	J	260	29	ppb v/v			02/08/14 07:24	32
1,1-Dichloroethene	190	J	260	42	ppb v/v			02/08/14 07:24	32
cis-1,2-Dichloroethene	ND		130	29	ppb v/v			02/08/14 07:24	32
trans-1,2-Dichloroethene	ND		130	33	ppb v/v			02/08/14 07:24	32
1,2-Dichloropropane	140		130	78	ppb v/v			02/08/14 07:24	32
cis-1,3-Dichloropropene	ND		130	34	ppb v/v			02/08/14 07:24	32
trans-1,3-Dichloropropene	ND		130	29	ppb v/v			02/08/14 07:24	32
Ethylbenzene	59	J	130	20	ppb v/v			02/08/14 07:24	32
4-Ethyltoluene	ND		130	61	ppb v/v			02/08/14 07:24	32
Hexachlorobutadiene	ND		650	140	ppb v/v			02/08/14 07:24	32
2-Hexanone	ND		130	28	ppb v/v			02/08/14 07:24	32
4-Methyl-2-pentanone (MIBK)	ND		130	44	ppb v/v			02/08/14 07:24	32
Methylene Chloride	55	J	130	23	ppb v/v			02/08/14 07:24	32
Styrene	ND		130	19	ppb v/v			02/08/14 07:24	32
1,1,2,2-Tetrachloroethane	ND		130	22	ppb v/v			02/08/14 07:24	32
Tetrachloroethene	190		130	17	ppb v/v			02/08/14 07:24	32
Toluene	310		130	17	ppb v/v			02/08/14 07:24	32

Client: Sandia National Laboratories

Project/Site: CWL

Client Sample ID: 095136-001/CWL-UI2-136 Lab Sample ID: 320-5780-8 Date Collected: 01/16/14 10:30 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloro-1,2,2-trifluoroetha	930		130	53	ppb v/v			02/08/14 07:24	325
ne									
1,2,4-Trichlorobenzene	ND		650	140	ppb v/v			02/08/14 07:24	325
1,1,1-Trichloroethane	35 .	J	98	21	ppb v/v			02/08/14 07:24	325
1,1,2-Trichloroethane	ND		130	22	ppb v/v			02/08/14 07:24	325
Trichloroethene	6200		130	34	ppb v/v			02/08/14 07:24	325
Trichlorofluoromethane	220		130	64	ppb v/v			02/08/14 07:24	325
1,2,4-Trimethylbenzene	ND		260	53	ppb v/v			02/08/14 07:24	325
1,3,5-Trimethylbenzene	ND		130	41	ppb v/v			02/08/14 07:24	325
Vinyl acetate	ND		260	47	ppb v/v			02/08/14 07:24	325
Vinyl chloride	ND		130	39	ppb v/v			02/08/14 07:24	325
m,p-Xylene	260		260	33	ppb v/v			02/08/14 07:24	325
o-Xylene	86	J	130	18	ppb v/v			02/08/14 07:24	325

Surrogate	%Recovery	Qualifier Li	imits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108	70	0 - 130		02/08/14 07:24	325
1,2-Dichloroethane-d4 (Surr)	100	70	0 - 130		02/08/14 07:24	325
Toluene-d8 (Surr)	107	70	0 - 130		02/08/14 07:24	325

Method: TO-15	- Volatile	Organic	Compounds	in	Ambient Air	- RA
---------------	------------	----------------	-----------	----	--------------------	------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	960	J	1600	58	ppb v/v			02/13/14 02:02	325

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130		02/13/14 02:02	325
1,2-Dichloroethane-d4 (Surr)	99		70 - 130		02/13/14 02:02	325
Toluene-d8 (Surr)	106		70 - 130		02/13/14 02:02	325

Client Sample ID: 095137-001/CWL-UI2-136

Date Collected: 01/16/14 10:32 Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Lab Sample ID: 320-5780-9

TestAmerica Job ID: 320-5780-1

Matrix: Air

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		130	25	ppb v/v			02/08/14 08:13	322
Benzyl chloride	ND		260	52	ppb v/v			02/08/14 08:13	322
Bromodichloromethane	ND		97	21	ppb v/v			02/08/14 08:13	322
Bromoform	ND		130	23	ppb v/v			02/08/14 08:13	322
Bromomethane	ND		260	110	ppb v/v			02/08/14 08:13	322
2-Butanone (MEK)	ND		260	64	ppb v/v			02/08/14 08:13	322
Carbon disulfide	ND		260	25	ppb v/v			02/08/14 08:13	322
Carbon tetrachloride	22	J	260	21	ppb v/v			02/08/14 08:13	322
Chlorobenzene	ND		97	21	ppb v/v			02/08/14 08:13	322
Chloroethane	ND		260	99	ppb v/v			02/08/14 08:13	322
Chloroform	540		97	31	ppb v/v			02/08/14 08:13	322
Chloromethane	ND		260	63	ppb v/v			02/08/14 08:13	322
Dibromochloromethane	ND		130	25	ppb v/v			02/08/14 08:13	322
1,2-Dibromoethane (EDB)	ND		260	24	ppb v/v			02/08/14 08:13	322
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		130	50	ppb v/v			02/08/14 08:13	322

TestAmerica Sacramento

Client: Sandia National Laboratories TestAmerica Job ID: 320-5780-1

Project/Site: CWL

Acetone

Surrogate

Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

1,2-Dichloroethane-d4 (Surr)

Client Sample ID: 095137-001/CWL-UI2-136

Lab Sample ID: 320-5780-9 Date Collected: 01/16/14 10:32 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

1,3-Dichlorobenzene ND 130 35 ppb v/v 02081* 1,4-Dichlorometrane ND 130 48 ppb v/v 02081* 1,4-Dichlorometrane ND 130 47 ppb v/v 02081* 1,1-Dichlorometrane ND 197 23 ppb v/v 02081* 1,1-Dichlorometrane 190 J 260 28 ppb v/v 02081* 1,1-Dichlorometrane 190 J 260 28 ppb v/v 02081* 1,1-Dichlorometrane ND 130 29 ppb v/v 02081* 1,1-Dichlorometrane ND 130 29 ppb v/v 02081* 1,1-Dichlorometrane ND 130 32 ppb v/v 02081* 1,1-Dichlorometrane ND 130 32 ppb v/v 02081* 1,1-Dichlorometrane ND 130 32 ppb v/v 02081* 1,1-Dichlorometrane ND 130 32 ppb v/v 02081* 1,1-Dichlorometrane ND 130 33 ppb v/v 02081* 1,1-Dichlorometrane ND 130 39 ppb v/v 02081* 1,1-Dichlorometrane ND 130 28 ppb v/v 02081* 1,1-Dichlorometrane ND 130 28 ppb v/v 02081* 1,1-Dichlorometrane ND 130 28 ppb v/v 02081* 1,1-Dichlorometrane ND 130 28 ppb v/v 02081* 1,1-Dichlorometrane ND 130 28 ppb v/v 02081* 1,1-Dichlorometrane ND 130 28 ppb v/v 02081* 1,1-Dichlorometrane ND 130 28 ppb v/v 02081* 1,1-Dichlorometrane ND 130 28 ppb v/v 02081* 1,1-Dichlorometrane ND 130 28 ppb v/v 02081* 1,1-Dichlorometrane ND 130 28 ppb v/v 02081* 1,1-Dichlorometrane ND 130 29 ppb v/v 02081* 1,1-Dichloromet	nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1.4-Dichlorobenzene	2-Dichlorobenzene	ND		130	42	ppb v/v			02/08/14 08:13	322
Dichlorodiffuoromethane	3-Dichlorobenzene	ND		130	35	ppb v/v			02/08/14 08:13	322
1,1-Dichloroethane ND 97 23 pb v/v 02/08/1-1,2-Dichloroethane 49 J 260 28 pb v/v 02/08/1-1,1-Dichloroethane 190 J 260 28 pb v/v 02/08/1-1 20/08/1-1 <td>I-Dichlorobenzene</td> <td>ND</td> <td></td> <td>130</td> <td>48</td> <td>ppb v/v</td> <td></td> <td></td> <td>02/08/14 08:13</td> <td>322</td>	I-Dichlorobenzene	ND		130	48	ppb v/v			02/08/14 08:13	322
1,2-Dichloroethane	chlorodifluoromethane	ND		130	47	ppb v/v			02/08/14 08:13	322
1,1-Dichloroethene	l-Dichloroethane	ND		97	23	ppb v/v			02/08/14 08:13	322
cis-1,2-Dichloroethene ND 130 29 ppb v/v 02/08/11 trans-1,2-Dichloroethene ND 130 32 ppb v/v 02/08/11 trans-1,3-Dichloropropane 140 130 77 ppb v/v 02/08/11 cis-1,3-Dichloropropene ND 130 33 ppb v/v 02/08/11 Ethylbenzene 69 J 130 20 ppb v/v 02/08/11 Ethylbenzene ND 130 60 ppb v/v 02/08/11 Hexachlorobutadiene ND 130 60 ppb v/v 02/08/11 Hexachlorobutadiene ND 130 28 ppb v/v 02/08/11 2-Hexanone ND 130 28 ppb v/v 02/08/11 4-Methyl-2-pentanone (MIBK) ND 130 23 ppb v/v 02/08/11 Methylene Chloride 53 J 130 23 ppb v/v 02/08/11 Styrene 26 J 130 19 ppb v/v 02/08/11 Styrene 26 J 130 19 ppb v/v 02/08/11 Tatrachloroethane 170 130	≀-Dichloroethane	49	J	260	28	ppb v/v			02/08/14 08:13	322
trans-1,2-Dichloroethene ND 130 32 ppb v/v 02/08/rt 1,2-Dichloropropane 140 130 77 ppb v/v 02/08/rt cis-1,3-Dichloropropene ND 130 33 ppb v/v 02/08/rt stars-1,3-Dichloropropene ND 130 28 ppb v/v 02/08/rt Ethylbenzene 69 J 130 20 ppb v/v 02/08/rt 4-Ethylbouren ND 640 140 ppb v/v 02/08/rt 4-Hexachlorobutadine ND 640 140 ppb v/v 02/08/rt 4-Hexachlorobutadine ND 130 28 ppb v/v 02/08/rt 4-Hexachloroethene ND 130 28 ppb v/v 02/08/rt 4-Hexachloroethene ND 130 23 ppb v/v 02/08/rt 4-Methyl-2-pentanone (MIBK) ND 130 29 ppb v/v 02/08/rt 4-Methyl-2-pentanone (MIBK) ND 130 29 ppb v/v 02/08/rt 5tyrene 26 J 130 29 ppb v/v 02/08/rt 5tyrene <td>I-Dichloroethene</td> <td>190</td> <td>J</td> <td>260</td> <td>42</td> <td>ppb v/v</td> <td></td> <td></td> <td>02/08/14 08:13</td> <td>322</td>	I-Dichloroethene	190	J	260	42	ppb v/v			02/08/14 08:13	322
1,2-Dichloropropane 140 130 77 pbb v/v 02/08/1- cis-1,3-Dichloropropene ND 130 33 pbb v/v 02/08/1- cis-1,3-Dichloropropene ND 130 28 pbb v/v 02/08/1- cis-1,3-Dichloropropene ND 130 60 pbb v/v 02/08/1- cis-1,3-Dichloropropene ND 130 60 pbb v/v 02/08/1- cis-1,3-Dichloropropene ND 130 60 pbb v/v 02/08/1- cis-1,3-Dichloropropene 02/08/1- cis-1,3-Dichloropropene ND 130 60 pbb v/v 02/08/1- cis-1,3-Dichloropropene 02/08/1- cis-1,3-Dichloro	-1,2-Dichloroethene	ND		130	29	ppb v/v			02/08/14 08:13	322
130 130 130 28 ppb v/v 02/08/1-	ns-1,2-Dichloroethene	ND		130	32	ppb v/v			02/08/14 08:13	322
trans-1,3-Dichloropropene ND 130 28 ppb v/v 02/08/1- Ethylbenzene 69 J 130 20 ppb v/v 02/08/1- Cell p	2-Dichloropropane	140		130	77	ppb v/v			02/08/14 08:13	322
Ethylbenzene 69 J 130 20 ppb v/v 02/08/14 4-Ethylblouene ND 130 60 ppb v/v 02/08/14 Hexachlorobutadiene ND 640 140 ppb v/v 02/08/14 2-Hexanone ND 130 28 ppb v/v 02/08/14 4-Methyl-2-pentanone (MIBK) ND 130 43 ppb v/v 02/08/14 4-Methyl-2-pentanone (MIBK) ND 130 23 ppb v/v 02/08/14 Methylene Chloride 53 J 130 19 ppb v/v 02/08/14 Styrene 26 J 130 19 ppb v/v 02/08/14 Styrene 170 130 16 ppb v/v 02/08/14 Totuene 350 130 16 ppb v/v 02/08/14 Totuene 350 130 16 ppb v/v 02/08/14 1,1,2-Trichloro-1,2,2-trifluoroetha 90 130 52 ppb v/v 02/08/14 1,1,2-Trichloroethane ND 640 140 ppb v/v 02/08/14 1,1,1-Trichloroethane ND 130 3 ppb	-1,3-Dichloropropene	ND		130	33	ppb v/v			02/08/14 08:13	322
4-Ethyltoluene ND 130 60 ppb v/v 02/08/1- Hexachlorobutadiene ND 640 140 ppb v/v 02/08/1- 2-Hexanone ND 130 28 ppb v/v 02/08/1- 4-Methyl-2-pentanone (MIBK) ND 130 43 ppb v/v 02/08/1- Methyl-2-pentanone (MIBK) ND 130 43 ppb v/v 02/08/1- Methylene Chloride 53 J 130 130 23 ppb v/v 02/08/1- Styrene 26 J 130 130 19 ppb v/v 02/08/1- Styrene 170 130 16 ppb v/v 02/08/1- Tetrachloroethane ND 130 22 ppb v/v 02/08/1- Toluene 350 130 16 ppb v/v 02/08/1- Toluene 350 130 16 ppb v/v 02/08/1- Toluene 350 130 16 ppb v/v 02/08/1- Toluene 350 130 16 ppb v/v 02/08/1- Toluene 350 130 16 ppb v/v 02/08/1- Toluene 350 130 16 ppb v/v 02/08/1- Toluene 350 130 16 ppb v/v 02/08/1- Toluene 350 130 16 ppb v/v 02/08/1- Trichloro-1,2,2-trifluoroetha 900 130 52 ppb v/v 02/08/1- Trichloroethane ND 640 140 ppb v/v 02/08/1- Trichloroethane ND 130 22 ppb v/v 02/08/1- Trichloroethane ND 130 22 ppb v/v 02/08/1- Trichloroethane ND 130 34 ppb v/v 02/08/1- Trichloroethene 5900 130 34 ppb v/v 02/08/1- Trichloroethene S900 130 34 ppb v/v 02/08/1- Trichlorofluoromethane 220 130 63 ppb v/v 02/08/1- Trichlorofluoromethane 220 130 63 ppb v/v 02/08/1- Trichlorofluoromethane ND 260 52 ppb v/v 02/08/1- Trichlorofluoroethane ND 130 40 ppb v/v 02/08/1- Trichlorofluoroethane ND 130 40 ppb v/v 02/08/1- Trichlorofluoroethane ND 130 40 ppb v/v 02/08/1- Trichloroethane ND 130 39 pb v/v 02/08/1- Trichloroethane ND 130 39 pb v/v 02/08/1- Trichloroethane ND 130 39 pb v/v 02/08/1- Trichloroethane ND 130 39 pb v/v 02/08/1- Trichloroethane ND 130 39 pb v/v 02/08/1- Trichloroethane ND 130 39 pb v/v 02/08/1- Trichloroethane ND 130 39 pb v/v 02/08/1- Trichloroethane ND 130 39 pb v/v 02/08/1- Trichloroethane ND 130 39 pb v/v 02/08/1- Trichloroethane ND 130 39 pb v/v 02/08/1- Trichloroethane ND 130 39 pb v/v 02/08/1- Trichloroethane ND 130 39 pb v/v 02/08/1- Trichloroethane ND 130 39 pb v/v 02/08/1- Trichloroethane ND 130 39 pb v/v 02/08/1- Trichloroethane ND 130 39 pb v/v 02/08/1- Trichloroethane ND 130 39 pb v/v 02/08/1- Trichloroethane ND 130 39 pb v/v 02/08/1- Trichloroethan	ns-1,3-Dichloropropene	ND		130	28	ppb v/v			02/08/14 08:13	322
Hexachlorobutadiene	hylbenzene	69	J	130	20	ppb v/v			02/08/14 08:13	322
2-Hexanone ND 130 28 ppb v/v 02/08/14-Methyl-2-pentanone (MIBK) ND 130 43 ppb v/v 02/08/14-Methylene Chloride 53 J 130 23 ppb v/v 02/08/14-Methylene Chloride 53 J 130 23 ppb v/v 02/08/14-Methylene Chloride 53 J 130 23 ppb v/v 02/08/14-Methylene Chloride 53 J 130 19 ppb v/v 02/08/14-Methylene Chloride 150 J 130 19 ppb v/v 02/08/14-Methylene Chloride 170 130 16 ppb v/v 02/08/14-Methylene 170 130 16 ppb v/v 02/0	Ethyltoluene	ND		130	60	ppb v/v			02/08/14 08:13	322
4-Methyl-2-pentanone (MIBK) ND 130 43 ppb v/v 02/08/1- Methylene Chloride 53 J 130 23 ppb v/v 02/08/1- Styrene 26 J 130 19 ppb v/v 02/08/1- Tetrachloroethane ND 130 22 ppb v/v 02/08/1- Tetrachloroethene 170 130 16 ppb v/v 02/08/1- Toluene 350 130 16 ppb v/v 02/08/1- Toluene 350 130 16 ppb v/v 02/08/1- Toluene 350 130 16 ppb v/v 02/08/1- Toluene 350 130 16 ppb v/v 02/08/1- Toluene 350 130 16 ppb v/v 02/08/1- Toluene 350 130 16 ppb v/v 02/08/1- Toluene 1,2,4-Trichloro-1,2,2-trifluoroetha 900 1640 140 ppb v/v 02/08/1- Tetrachloroethane ND 130 22 ppb v/v 02/08/1- 1,1,1-Trichloroethane ND 130 22 ppb v/v 02/08/1- Trichloroethane 5900 130 34 ppb v/v 02/08/1- Trichloroethene 5900 130 34 ppb v/v 02/08/1- Trichlorofluoromethane 220 130 63 ppb v/v 02/08/1- 1,2,4-Trimethylbenzene ND 260 52 ppb v/v 02/08/1- 1,3,5-Trimethylbenzene ND 260 52 ppb v/v 02/08/1- 1,3,5-Trimethylbenzene ND 130 40 ppb v/v 02/08/1- Vinyl acetate ND 260 32 ppb v/v 02/08/1- Vinyl acetate ND 260 32 ppb v/v 02/08/1- Vinyl acetate ND 260 32 ppb v/v 02/08/1- Vinyl acetate ND 260 32 ppb v/v 02/08/1- Surrogate 88 J 130 17 ppb v/v 02/08/1- Surrogate 88 Capacter Limits Prepared Anall 4-Bromofluorobenzene (Surr) 100 70-130 02/08/1-	xachlorobutadiene	ND		640	140	ppb v/v			02/08/14 08:13	322
Methylene Chloride 53 J 130 23 ppb v/v 02/08/14 Styrene 26 J 130 19 ppb v/v 02/08/14 1,1,2,2-Tetrachloroethane ND 130 22 ppb v/v 02/08/14 Tetrachloroethene 170 130 16 ppb v/v 02/08/14 Toluene 350 130 16 ppb v/v 02/08/14 1,1,2-Trichloro-1,2,2-trifluoroethan 900 130 25 ppb v/v 02/08/14 ne 1,2,4-Trichloroethane ND 640 140 ppb v/v 02/08/14 1,1,1-Trichloroethane 33 J 97 21 ppb v/v 02/08/14 1,1,2-Trichloroethane ND 130 22 ppb v/v 02/08/14 1,1,1-Trichloroethane ND 130 34 ppb v/v 02/08/14 Trichloroethane 590 130 34 ppb v/v 02/08/14 Trichloroethane 20 10 260	Hexanone	ND		130	28	ppb v/v			02/08/14 08:13	322
Styrene 26 J 130 19 ppb v/v 02/08/1- 1,1,2,2-Tetrachloroethane ND 130 22 ppb v/v 02/08/1- Tetrachloroethene 170 130 16 ppb v/v 02/08/1- Toluene 350 130 16 ppb v/v 02/08/1- 1,1,2-Trichloro-1,2,2-trifluoroetha 900 130 52 ppb v/v 02/08/1- 1,2,4-Trichloroethane ND 640 140 ppb v/v 02/08/1- 1,1,1-Trichloroethane 33 J 97 21 ppb v/v 02/08/1- 1,1,2-Trichloroethane ND 130 22 ppb v/v 02/08/1- 1,1,2-Trichloroethane ND 130 34 ppb v/v 02/08/1- 1,1,2-Trichloroethane 5900 130 34 ppb v/v 02/08/1- 1,2,4-Trimethylbenzene ND 260 52 ppb v/v 02/08/1- 1,3,5-Trimethylbenzene ND 130 40 ppb v/v 02/08/1- Vinyl acetate ND 260 47 ppb v/v 02/08/1- Vinyl chloride ND	vlethyl-2-pentanone (MIBK)	ND		130	43	ppb v/v			02/08/14 08:13	322
1,1,2,2-Tetrachloroethane ND 130 22 pb v/v 02/08/1- Tetrachloroethene 170 130 16 ppb v/v 02/08/1- Toluene 350 130 16 ppb v/v 02/08/1- 1,1,2-Trichloro-1,2,2-trifluoroetha 900 130 52 ppb v/v 02/08/1- ne 1,2,4-Trichloroethane ND 640 140 ppb v/v 02/08/1- 1,1,1-Trichloroethane 33 J 97 21 ppb v/v 02/08/1- 1,1,2-Trichloroethane ND 130 22 ppb v/v 02/08/1- 1,1,2-Trichloroethane ND 130 22 ppb v/v 02/08/1- Trichloroethane 5900 130 34 ppb v/v 02/08/1- Trichlorofluoromethane 220 130 63 ppb v/v 02/08/1- Trichlorofluoromethane 220 130 63 ppb v/v 02/08/1- 1,2,4-Trimethylbenzene ND 130 40 ppb v/v 02/08/1- Vinyl acetate ND 130 40 ppb v/v 02/08/1- Vinyl chloride <td>thylene Chloride</td> <td>53</td> <td>J</td> <td>130</td> <td>23</td> <td>ppb v/v</td> <td></td> <td></td> <td>02/08/14 08:13</td> <td>322</td>	thylene Chloride	53	J	130	23	ppb v/v			02/08/14 08:13	322
Tetrachloroethene 170 130 16 ppb v/v 02/08/1- Toluene 350 130 16 ppb v/v 02/08/1- 1,1,2-Trichloro-1,2,2-trifluoroetha 900 130 52 ppb v/v 02/08/1- ne 1,2,4-Trichloroethane ND 640 140 ppb v/v 02/08/1- 1,1,1-Trichloroethane 33 J 97 21 ppb v/v 02/08/1- 1,1,2-Trichloroethane ND 130 22 ppb v/v 02/08/1- 1,1,2-Trichloroethane ND 130 34 ppb v/v 02/08/1- Trichloroethene 5900 130 34 ppb v/v 02/08/1- Trichlorofluoromethane 220 130 63 ppb v/v 02/08/1- 1,2,4-Trimethylbenzene ND 260 52 ppb v/v 02/08/1- 1,3,5-Trimethylbenzene ND 130 40 ppb v/v 02/08/1- Vinyl acetate ND 130 39 ppb v/v 02/08/1- Vinyl chloride ND 130 39 ppb v/v 02/08/1- m,p-Xylene	yrene	26	J	130	19	ppb v/v			02/08/14 08:13	322
Toluene 350 130 16 ppb v/v 02/08/1- 1,1,2-Trichloro-1,2,2-trifluoroetha 900 130 52 ppb v/v 02/08/1- ne 1,2,4-Trichlorobenzene ND 640 140 ppb v/v 02/08/1- 1,1,1-Trichloroethane 33 J 97 21 ppb v/v 02/08/1- 1,1,2-Trichloroethane ND 130 22 ppb v/v 02/08/1- 1,1,2-Trichloroethane 5900 130 34 ppb v/v 02/08/1- Trichlorofluoromethane 220 130 63 ppb v/v 02/08/1- 1,2,4-Trimethylbenzene ND 260 52 ppb v/v 02/08/1- 1,3,5-Trimethylbenzene ND 130 40 ppb v/v 02/08/1- Vinyl acetate ND 260 47 ppb v/v 02/08/1- Vinyl chloride ND 130 39 ppb v/v 02/08/1- m,p-Xylene 290 260 32 ppb v/v 02/08/1- o-Xylene 98 J 130 17 ppb v/v 02/08/1- 4-Bromofluorobenzene (Surr)	1,2,2-Tetrachloroethane	ND		130	22	ppb v/v			02/08/14 08:13	322
1,1,2-Trichloro-1,2,2-trifluoroetha 900 130 52 ppb v/v 02/08/1-10 ne ND 640 140 ppb v/v 02/08/1-10 1,2,4-Trichloroethane ND 640 140 ppb v/v 02/08/1-10 1,1,1-Trichloroethane 33 J 97 21 ppb v/v 02/08/1-10 1,1,2-Trichloroethane ND 130 22 ppb v/v 02/08/1-10 1,1,2-Trichloroethane 5900 130 34 ppb v/v 02/08/1-10 Trichlorofluoromethane 220 130 63 ppb v/v 02/08/1-10 1,2,4-Trimethylbenzene ND 260 52 ppb v/v 02/08/1-10 1,3,5-Trimethylbenzene ND 130 40 ppb v/v 02/08/1-10 Vinyl acetate ND 260 47 ppb v/v 02/08/1-10 Vinyl chloride ND 130 39 ppb v/v 02/08/1-10 m,p-Xylene 290 260 32 ppb v/v 02/08/1-10 o-Xylene 98 J 130 17 ppb	trachloroethene	170		130	16	ppb v/v			02/08/14 08:13	322
ne 1,2,4-Trichlorobenzene ND 640 140 ppb v/v 02/08/14 1,1,1-Trichloroethane 33 J 97 21 ppb v/v 02/08/14 1,1,2-Trichloroethane ND 130 22 ppb v/v 02/08/14 Trichloroethene 5900 130 34 ppb v/v 02/08/14 Trichlorofluoromethane 220 130 63 ppb v/v 02/08/14 1,2,4-Trimethylbenzene ND 260 52 ppb v/v 02/08/14 1,3,5-Trimethylbenzene ND 130 40 ppb v/v 02/08/14 Vinyl acetate ND 260 47 ppb v/v 02/08/14 Vinyl chloride ND 130 39 ppb v/v 02/08/14 Vinyl chloride ND 130 39 ppb v/v 02/08/14 m,p-Xylene 290 260 32 ppb v/v 02/08/14 o-Xylene 98 J 130 17 ppb v/v 02/08/14 Surrogate %Recovery Qualifier Limits Prepared Analyse 4-Bromofluorobenzen	luene	350		130	16	ppb v/v			02/08/14 08:13	322
1,2,4-Trichlorobenzene ND 640 140 ppb v/v 02/08/14 1,1,1-Trichloroethane 33 J 97 21 ppb v/v 02/08/14 1,1,2-Trichloroethane ND 130 22 ppb v/v 02/08/14 Trichloroethene 5900 130 34 ppb v/v 02/08/14 Trichlorofluoromethane 220 130 63 ppb v/v 02/08/14 1,2,4-Trimethylbenzene ND 260 52 ppb v/v 02/08/14 1,3,5-Trimethylbenzene ND 130 40 ppb v/v 02/08/14 Vinyl acetate ND 260 47 ppb v/v 02/08/14 Vinyl chloride ND 130 39 ppb v/v 02/08/14 vinyl chloride ND 130 39 ppb v/v 02/08/14 o-Xylene 290 260 32 ppb v/v 02/08/14 o-Xylene 98 J 130 17 ppb v/v 02/08/14 Surrogate %Recovery Qualifier Limits Prepared Analysis </td <td></td> <td>900</td> <td></td> <td>130</td> <td>52</td> <td>ppb v/v</td> <td></td> <td></td> <td>02/08/14 08:13</td> <td>322</td>		900		130	52	ppb v/v			02/08/14 08:13	322
1,1,2-Trichloroethane ND 130 22 ppb v/v 02/08/1- Trichloroethene 5900 130 34 ppb v/v 02/08/1- Trichlorofluoromethane 220 130 63 ppb v/v 02/08/1- 1,2,4-Trimethylbenzene ND 260 52 ppb v/v 02/08/1- 1,3,5-Trimethylbenzene ND 130 40 ppb v/v 02/08/1- Vinyl acetate ND 260 47 ppb v/v 02/08/1- Vinyl chloride ND 130 39 ppb v/v 02/08/1- m,p-Xylene 290 260 32 ppb v/v 02/08/1- o-Xylene 98 J 130 17 ppb v/v 02/08/1- Surrogate %Recovery Qualifier Limits Prepared Analyst 4-Bromofluorobenzene (Surr) 109 70 - 130 70 - 130 02/08/1- 1,2-Dichloroethane-d4 (Surr) 100 70 - 130 02/08/1-		ND		640	140	ppb v/v			02/08/14 08:13	322
Trichloroethene 5900 130 34 ppb v/v 02/08/14 Trichlorofluoromethane 220 130 63 ppb v/v 02/08/14 1,2,4-Trimethylbenzene ND 260 52 ppb v/v 02/08/14 1,3,5-Trimethylbenzene ND 130 40 ppb v/v 02/08/14 Vinyl acetate ND 260 47 ppb v/v 02/08/14 Vinyl chloride ND 130 39 ppb v/v 02/08/14 m,p-Xylene 290 260 32 ppb v/v 02/08/14 o-Xylene 98 J 130 17 ppb v/v 02/08/14 Surrogate %Recovery Qualifier Limits Prepared Analy 4-Bromofluorobenzene (Surr) 109 70 - 130 02/08/14 1,2-Dichloroethane-d4 (Surr) 100 70 - 130 02/08/14	1,1-Trichloroethane	33	J	97	21	ppb v/v			02/08/14 08:13	322
Trichlorofluoromethane 220 130 63 ppb v/v 02/08/14 1,2,4-Trimethylbenzene ND 260 52 ppb v/v 02/08/14 1,3,5-Trimethylbenzene ND 130 40 ppb v/v 02/08/14 Vinyl acetate ND 260 47 ppb v/v 02/08/14 Vinyl chloride ND 130 39 ppb v/v 02/08/14 m,p-Xylene 290 260 32 ppb v/v 02/08/14 o-Xylene 98 J 130 17 ppb v/v 02/08/14 Surrogate %Recovery Qualifier Limits Prepared Analy 4-Bromofluorobenzene (Surr) 109 70 - 130 02/08/14 1,2-Dichloroethane-d4 (Surr) 100 70 - 130 02/08/14	1,2-Trichloroethane	ND		130	22	ppb v/v			02/08/14 08:13	322
1,2,4-Trimethylbenzene ND 260 52 ppb v/v 02/08/14 1,3,5-Trimethylbenzene ND 130 40 ppb v/v 02/08/14 Vinyl acetate ND 260 47 ppb v/v 02/08/14 Vinyl chloride ND 130 39 ppb v/v 02/08/14 m,p-Xylene 290 260 32 ppb v/v 02/08/14 o-Xylene 98 J 130 17 ppb v/v 02/08/14 Surrogate %Recovery Qualifier Limits Prepared Analy 4-Bromofluorobenzene (Surr) 109 70 - 130 02/08/14 1,2-Dichloroethane-d4 (Surr) 100 70 - 130 02/08/14	ichloroethene	5900		130	34	ppb v/v			02/08/14 08:13	322
1,3,5-Trimethylbenzene ND 130 40 ppb v/v 02/08/14 Vinyl acetate ND 260 47 ppb v/v 02/08/14 Vinyl chloride ND 130 39 ppb v/v 02/08/14 m,p-Xylene 290 260 32 ppb v/v 02/08/14 o-Xylene 98 J 130 17 ppb v/v 02/08/14 Surrogate %Recovery Qualifier Limits Prepared Analy 4-Bromofluorobenzene (Surr) 109 70 - 130 02/08/15 1,2-Dichloroethane-d4 (Surr) 100 70 - 130 02/08/15	ichlorofluoromethane	220		130	63	ppb v/v			02/08/14 08:13	322
Vinyl acetate ND 260 47 ppb v/v 02/08/1- Vinyl chloride ND 130 39 ppb v/v 02/08/1- m,p-Xylene 290 260 32 ppb v/v 02/08/1- o-Xylene 98 J 130 17 ppb v/v 02/08/1- Surrogate %Recovery Qualifier Limits Prepared Analy 4-Bromofluorobenzene (Surr) 109 70 - 130 02/08/1- 02/08/1- 1,2-Dichloroethane-d4 (Surr) 100 70 - 130 02/08/1- 02/08/1-	2,4-Trimethylbenzene	ND		260	52	ppb v/v			02/08/14 08:13	322
Vinyl chloride ND 130 39 ppb v/v 02/08/14 m,p-Xylene 290 260 32 ppb v/v 02/08/14 o-Xylene 98 J 130 17 ppb v/v 02/08/14 Surrogate %Recovery Qualifier Limits Prepared Anal 4-Bromofluorobenzene (Surr) 109 70 - 130 02/08/14 1,2-Dichloroethane-d4 (Surr) 100 70 - 130 02/08/14	3,5-Trimethylbenzene	ND		130	40	ppb v/v			02/08/14 08:13	322
m,p-Xylene 290 260 32 ppb v/v 02/08/1- o-Xylene 98 J 130 17 ppb v/v 02/08/1- Surrogate %Recovery Qualifier Limits Prepared Analy 4-Bromofluorobenzene (Surr) 109 70 - 130 02/08/1- 1,2-Dichloroethane-d4 (Surr) 100 70 - 130 02/08/1-	nyl acetate	ND		260	47	ppb v/v			02/08/14 08:13	322
Surrogate %Recovery 4-Bromofluorobenzene (Surr) Qualifier 109 Limits 70 - 130 Prepared Prepared 100 - 130 Analy 2008/1-000 1,2-Dichloroethane-d4 (Surr) 100 70 - 130 02/08/1-000 02/08/1-000	nyl chloride	ND		130	39	ppb v/v			02/08/14 08:13	322
Surrogate %Recovery Qualifier Limits Prepared Analysis 4-Bromofluorobenzene (Surr) 109 70 - 130 02/08/1 1,2-Dichloroethane-d4 (Surr) 100 70 - 130 02/08/1	p-Xylene	290		260	32	ppb v/v			02/08/14 08:13	322
4-Bromofluorobenzene (Surr) 109 70 - 130 02/08/1-130 1,2-Dichloroethane-d4 (Surr) 100 70 - 130 02/08/1-130	Xylene	98	J	130	17	ppb v/v			02/08/14 08:13	322
1,2-Dichloroethane-d4 (Surr) 100 70 - 130 02/08/1	ırrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
	Bromofluorobenzene (Surr)	109		70 - 130			-		02/08/14 08:13	32
Toluene-d8 (Surr) 106 70 - 130 02/08/1	2-Dichloroethane-d4 (Surr)	100		70 - 130					02/08/14 08:13	32
	luene-d8 (Surr)	106		70 - 130					02/08/14 08:13	32
Method: TO-15 - Volatile Organic Compounds in Ambient Air - RA		anic Compounds i	n Ambient	Air - RA						

TestAmerica Sacramento

02/13/14 02:51

Analyzed

02/13/14 02:51

02/13/14 02:51

02/13/14 02:51

57 ppb v/v

Prepared

1600

Limits

70 - 130

70 - 130

70 - 130

870 J

%Recovery Qualifier

108

100

108

322

322

322

322

Dil Fac

Client: Sandia National Laboratories

Project/Site: CWL

Client Sample ID: 095138-001/CWL-UI2-FB1

Lab Sample ID: 320-5780-10 Date Collected: 01/16/14 10:18 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 61

Method: TO-15 - Volatile Organi								
Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Benzene	ND	0.40	0.079	ppb v/v			02/08/14 09:05	
Benzyl chloride	ND	0.80		ppb v/v			02/08/14 09:05	
Bromodichloromethane	ND	0.30	0.066	ppb v/v			02/08/14 09:05	
Bromoform	ND	0.40	0.070	ppb v/v			02/08/14 09:05	
Bromomethane	ND	0.80	0.34	ppb v/v			02/08/14 09:05	
2-Butanone (MEK)	ND	0.80	0.20	ppb v/v			02/08/14 09:05	
Carbon disulfide	ND	0.80	0.078	ppb v/v			02/08/14 09:05	
Carbon tetrachloride	ND	0.80	0.064	ppb v/v			02/08/14 09:05	
Chlorobenzene	ND	0.30	0.064	ppb v/v			02/08/14 09:05	
Chloroethane	ND	0.80	0.31	ppb v/v			02/08/14 09:05	
Chloroform	ND	0.30	0.095	ppb v/v			02/08/14 09:05	
Chloromethane	ND	0.80	0.20	ppb v/v			02/08/14 09:05	
Dibromochloromethane	ND	0.40	0.079	ppb v/v			02/08/14 09:05	
1,2-Dibromoethane (EDB)	ND	0.80	0.075	ppb v/v			02/08/14 09:05	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.40	0.16	ppb v/v			02/08/14 09:05	
1,2-Dichlorobenzene	ND	0.40	0.13	ppb v/v			02/08/14 09:05	
1,3-Dichlorobenzene	ND	0.40	0.11	ppb v/v			02/08/14 09:05	
1,4-Dichlorobenzene	ND	0.40	0.15	ppb v/v			02/08/14 09:05	
Dichlorodifluoromethane	ND	0.40	0.15	ppb v/v			02/08/14 09:05	
1,1-Dichloroethane	ND	0.30	0.072	ppb v/v			02/08/14 09:05	
1,2-Dichloroethane	ND	0.80	0.088	ppb v/v			02/08/14 09:05	
1,1-Dichloroethene	ND	0.80	0.13	ppb v/v			02/08/14 09:05	
cis-1,2-Dichloroethene	ND	0.40	0.089	ppb v/v			02/08/14 09:05	
rans-1,2-Dichloroethene	ND	0.40	0.10	ppb v/v			02/08/14 09:05	
1,2-Dichloropropane	ND	0.40	0.24	ppb v/v			02/08/14 09:05	
cis-1,3-Dichloropropene	ND	0.40	0.10	ppb v/v			02/08/14 09:05	
rans-1,3-Dichloropropene	ND	0.40	0.088	ppb v/v			02/08/14 09:05	
Ethylbenzene	ND	0.40		ppb v/v			02/08/14 09:05	
4-Ethyltoluene	ND	0.40	0.19	ppb v/v			02/08/14 09:05	
Hexachlorobutadiene	ND	2.0					02/08/14 09:05	
2-Hexanone	ND	0.40		ppb v/v			02/08/14 09:05	
4-Methyl-2-pentanone (MIBK)	ND	0.40		ppb v/v			02/08/14 09:05	
Methylene Chloride	ND	0.40		ppb v/v			02/08/14 09:05	
Styrene	ND	0.40		ppb v/v			02/08/14 09:05	
1,1,2,2-Tetrachloroethane	ND	0.40		ppb v/v			02/08/14 09:05	
Tetrachloroethene	ND	0.40		ppb v/v			02/08/14 09:05	
Toluene	ND	0.40		ppb v/v			02/08/14 09:05	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.40		ppb v/v			02/08/14 09:05	
1,2,4-Trichlorobenzene	ND	2.0						
1,1,1-Trichloroethane				ppb v/v			02/08/14 09:05	
1,1,2-Trichloroethane	ND ND	0.30		ppb v/v			02/08/14 09:05	
Trichloroethene	ND ND	0.40		ppb v/v			02/08/14 09:05	
	ND ND	0.40		ppb v/v			02/08/14 09:05	
Trichlorofluoromethane	ND ND	0.40		ppb v/v			02/08/14 09:05	
1,2,4-Trimethylbenzene	ND ND	0.80		ppb v/v			02/08/14 09:05	
1,3,5-Trimethylbenzene	ND	0.40		ppb v/v			02/08/14 09:05	
Vinyl acetate	ND	0.80		ppb v/v			02/08/14 09:05	
√inyl chloride	ND	0.40	0.12	ppb v/v			02/08/14 09:05	

TestAmerica Job ID: 320-5780-1

Client: Sandia National Laboratories

Project/Site: CWL

Client Sample ID: 095138-001/CWL-UI2-FB1 Lab Sample ID: 320-5780-10

Date Collected: 01/16/14 10:18 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	ND		0.40	0.054	ppb v/v			02/08/14 09:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130			-		02/08/14 09:05	1
1,2-Dichloroethane-d4 (Surr)	98		70 - 130					02/08/14 09:05	1
Toluene-d8 (Surr)	102		70 - 130					02/08/14 09:05	1

Method: TO-15 - Volatile Organic Compounds in Ambient Air - RA									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	1.1	J	5.0	0.18	ppb v/v			02/13/14 03:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130			-		02/13/14 03:42	1
1,2-Dichloroethane-d4 (Surr)	99		70 - 130					02/13/14 03:42	1
Toluene-d8 (Surr)	105		70 - 130					02/13/14 03:42	1

Client Sample ID: 095139-001/CWL-D1-100 Lab Sample ID: 320-5780-11

Date Collected: 01/16/14 09:07

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	130	25	ppb v/v			02/08/14 09:53	314
Benzyl chloride	ND	250	51	ppb v/v			02/08/14 09:53	314
Bromodichloromethane	ND	94	21	ppb v/v			02/08/14 09:53	314
Bromoform	ND	130	22	ppb v/v			02/08/14 09:53	314
Bromomethane	ND	250	110	ppb v/v			02/08/14 09:53	314
2-Butanone (MEK)	ND	250	62	ppb v/v			02/08/14 09:53	314
Carbon disulfide	ND	250	24	ppb v/v			02/08/14 09:53	314
Carbon tetrachloride	ND	250	20	ppb v/v			02/08/14 09:53	314
Chlorobenzene	ND	94	20	ppb v/v			02/08/14 09:53	314
Chloroethane	ND	250	97	ppb v/v			02/08/14 09:53	314
Chloroform	540	94	30	ppb v/v			02/08/14 09:53	314
Chloromethane	ND	250	62	ppb v/v			02/08/14 09:53	314
Dibromochloromethane	ND	130	25	ppb v/v			02/08/14 09:53	314
1,2-Dibromoethane (EDB)	ND	250	24	ppb v/v			02/08/14 09:53	314
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	130	49	ppb v/v			02/08/14 09:53	314
1,2-Dichlorobenzene	ND	130	41	ppb v/v			02/08/14 09:53	314
1,3-Dichlorobenzene	ND	130	35	ppb v/v			02/08/14 09:53	314
1,4-Dichlorobenzene	ND	130	47	ppb v/v			02/08/14 09:53	314
Dichlorodifluoromethane	ND	130	46	ppb v/v			02/08/14 09:53	314
1,1-Dichloroethane	ND	94	23	ppb v/v			02/08/14 09:53	314
1,2-Dichloroethane	61 J	250	28	ppb v/v			02/08/14 09:53	314
1,1-Dichloroethene	440	250	41	ppb v/v			02/08/14 09:53	314
cis-1,2-Dichloroethene	ND	130	28	ppb v/v			02/08/14 09:53	314
trans-1,2-Dichloroethene	ND	130	31	ppb v/v			02/08/14 09:53	314
1,2-Dichloropropane	95 J	130	75	ppb v/v			02/08/14 09:53	314
cis-1,3-Dichloropropene	ND	130	33	ppb v/v			02/08/14 09:53	314

TestAmerica Sacramento

TestAmerica Job ID: 320-5780-1

Matrix: Air

Client: Sandia National Laboratories

Project/Site: CWL

TestAmerica Job ID: 320-5780-1

Lab Sample ID: 320-5780-11

Client Sample ID: 095139-001/CWL-D1-100 Date Collected: 01/16/14 09:07 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND		130	28	ppb v/v			02/08/14 09:53	314
Ethylbenzene	64	J	130	20	ppb v/v			02/08/14 09:53	314
4-Ethyltoluene	ND		130	59	ppb v/v			02/08/14 09:53	314
Hexachlorobutadiene	ND		630	140	ppb v/v			02/08/14 09:53	314
2-Hexanone	ND		130	27	ppb v/v			02/08/14 09:53	314
4-Methyl-2-pentanone (MIBK)	ND		130	42	ppb v/v			02/08/14 09:53	314
Methylene Chloride	48	J	130	23	ppb v/v			02/08/14 09:53	314
Styrene	ND		130	19	ppb v/v			02/08/14 09:53	314
1,1,2,2-Tetrachloroethane	ND		130	22	ppb v/v			02/08/14 09:53	314
Tetrachloroethene	740		130	16	ppb v/v			02/08/14 09:53	314
Toluene	340		130	16	ppb v/v			02/08/14 09:53	314
1,1,2-Trichloro-1,2,2-trifluoroetha	1300		130	51	ppb v/v			02/08/14 09:53	314
ne 1,2,4-Trichlorobenzene	ND		630	140	ppb v/v			02/08/14 09:53	314
1,1,1-Trichloroethane	58	J	94	20	ppb v/v			02/08/14 09:53	314
1,1,2-Trichloroethane	ND		130	21	ppb v/v			02/08/14 09:53	314
Trichloroethene	9900		130	33	ppb v/v			02/08/14 09:53	314
Trichlorofluoromethane	300		130	62	ppb v/v			02/08/14 09:53	314
1,2,4-Trimethylbenzene	ND		250	51	ppb v/v			02/08/14 09:53	314
1,3,5-Trimethylbenzene	ND		130	39	ppb v/v			02/08/14 09:53	314
Vinyl acetate	ND		250	46	ppb v/v			02/08/14 09:53	314
Vinyl chloride	ND		130	38	ppb v/v			02/08/14 09:53	314
m,p-Xylene	280		250	31	ppb v/v			02/08/14 09:53	314
o-Xylene	82	J	130	17	ppb v/v			02/08/14 09:53	314
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130			-		02/08/14 09:53	314
1,2-Dichloroethane-d4 (Surr)	98		70 - 130					02/08/14 09:53	314
Toluene-d8 (Surr)	104		70 - 130					02/08/14 09:53	314

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	870	J	1600	56	ppb v/v			02/13/14 07:45	314
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		70 - 130			-		02/13/14 07:45	314
1,2-Dichloroethane-d4 (Surr)	97		70 - 130					02/13/14 07:45	314

Client Sample ID: 095140-001/CWL-D1-160 Lab Sample ID: 320-5780-12

Date Collected: 01/16/14 09:12 Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Orga	anic Compounds in Ambient A	ir						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND	190	37	ppb v/v			02/08/14 10:41	470
Benzyl chloride	ND	380	77	ppb v/v			02/08/14 10:41	470
Bromodichloromethane	ND	140	31	ppb v/v			02/08/14 10:41	470
Bromoform	ND	190	33	ppb v/v			02/08/14 10:41	470

TestAmerica Sacramento

Matrix: Air

Client: Sandia National Laboratories

Project/Site: CWL

Client Sample ID: 095140-001/CWL-D1-160 Lab Sample ID: 320-5780-12

Date Collected: 01/16/14 09:12 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL		Unit	D Prepared	Analyzed	Dil Fa
Bromomethane	ND		380	160	ppb v/v		02/08/14 10:41	47
2-Butanone (MEK)	ND		380	94	ppb v/v		02/08/14 10:41	47
Carbon disulfide	ND		380	37	ppb v/v		02/08/14 10:41	47
Carbon tetrachloride	ND		380	30	ppb v/v		02/08/14 10:41	470
Chlorobenzene	ND		140	30	ppb v/v		02/08/14 10:41	470
Chloroethane	ND		380	140	ppb v/v		02/08/14 10:41	470
Chloroform	490		140	45	ppb v/v		02/08/14 10:41	470
Chloromethane	ND		380	93	ppb v/v		02/08/14 10:41	470
Dibromochloromethane	ND		190	37	ppb v/v		02/08/14 10:41	470
1,2-Dibromoethane (EDB)	ND		380	35	ppb v/v		02/08/14 10:41	470
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		190	73	ppb v/v		02/08/14 10:41	470
1,2-Dichlorobenzene	ND		190	61	ppb v/v		02/08/14 10:41	470
1,3-Dichlorobenzene	ND		190	52	ppb v/v		02/08/14 10:41	470
1,4-Dichlorobenzene	ND		190	70	ppb v/v		02/08/14 10:41	470
Dichlorodifluoromethane	ND		190	68	ppb v/v		02/08/14 10:41	470
1,1-Dichloroethane	ND		140	34	ppb v/v		02/08/14 10:41	470
1,2-Dichloroethane	73	J	380	41	ppb v/v		02/08/14 10:41	470
1,1-Dichloroethene	770		380	61	ppb v/v		02/08/14 10:41	470
cis-1,2-Dichloroethene	ND		190	42	ppb v/v		02/08/14 10:41	470
trans-1,2-Dichloroethene	ND		190	47	ppb v/v		02/08/14 10:41	470
1,2-Dichloropropane	160	J	190	110	ppb v/v		02/08/14 10:41	470
cis-1,3-Dichloropropene	ND		190	49	ppb v/v		02/08/14 10:41	470
trans-1,3-Dichloropropene	ND		190	41	ppb v/v		02/08/14 10:41	470
Ethylbenzene	67	J	190	30	ppb v/v		02/08/14 10:41	470
4-Ethyltoluene	ND		190	88	ppb v/v		02/08/14 10:41	470
Hexachlorobutadiene	ND		940	200	ppb v/v		02/08/14 10:41	470
2-Hexanone	ND		190	41	ppb v/v		02/08/14 10:41	470
4-Methyl-2-pentanone (MIBK)	ND		190	63	ppb v/v		02/08/14 10:41	470
Methylene Chloride	67	J	190	34	ppb v/v		02/08/14 10:41	470
Styrene	ND		190	28	ppb v/v		02/08/14 10:41	470
1,1,2,2-Tetrachloroethane	ND		190	32	ppb v/v		02/08/14 10:41	470
Tetrachloroethene	560		190	24	ppb v/v		02/08/14 10:41	470
Toluene	330		190	24	ppb v/v		02/08/14 10:41	470
1,1,2-Trichloro-1,2,2-trifluoroetha	2000		190	77	ppb v/v		02/08/14 10:41	470
ne								
1,2,4-Trichlorobenzene	ND		940		ppb v/v		02/08/14 10:41	470
1,1,1-Trichloroethane	71	J	140		ppb v/v		02/08/14 10:41	470
1,1,2-Trichloroethane	ND		190		ppb v/v		02/08/14 10:41	470
Trichloroethene	16000		190		ppb v/v		02/08/14 10:41	470
Trichlorofluoromethane	470		190		ppb v/v		02/08/14 10:41	470
1,2,4-Trimethylbenzene	ND		380		ppb v/v		02/08/14 10:41	470
1,3,5-Trimethylbenzene	ND		190		ppb v/v		02/08/14 10:41	470
Vinyl acetate	ND		380		ppb v/v		02/08/14 10:41	470
Vinyl chloride	ND		190		ppb v/v		02/08/14 10:41	470
m,p-Xylene	300		380		ppb v/v		02/08/14 10:41	470
o-Xylene	92	J	190	25	ppb v/v		02/08/14 10:41	470
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	109		70 - 130			•	02/08/14 10:41	470

TestAmerica Job ID: 320-5780-1

Client: Sandia National Laboratories

Project/Site: CWL

Client Sample ID: 095140-001/CWL-D1-160 Lab Sample ID: 320-5780-12

Date Collected: 01/16/14 09:12 Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		70 - 130		02/08/14 10:41	470
Toluene-d8 (Surr)	105		70 - 130		02/08/14 10:41	470

Method: TO-15 - Volatile Orga	nic Compounds i	n Ambient	Air - RA						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	750	J	2400	84	ppb v/v			02/13/14 08:34	470
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130					02/13/14 08:34	470
1,2-Dichloroethane-d4 (Surr)	98		70 - 130					02/13/14 08:34	470

Client Sample ID: 095141-001/CWL-D1-240

Date Collected: 01/16/14 09:18 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		180	35	ppb v/v			02/08/14 11:30	443
Benzyl chloride	ND		350	72	ppb v/v			02/08/14 11:30	443
Bromodichloromethane	ND		130	29	ppb v/v			02/08/14 11:30	443
Bromoform	ND		180	31	ppb v/v			02/08/14 11:30	443
Bromomethane	ND		350	150	ppb v/v			02/08/14 11:30	443
2-Butanone (MEK)	ND		350	88	ppb v/v			02/08/14 11:30	443
Carbon disulfide	ND		350	35	ppb v/v			02/08/14 11:30	443
Carbon tetrachloride	65	J	350	28	ppb v/v			02/08/14 11:30	443
Chlorobenzene	ND		130	28	ppb v/v			02/08/14 11:30	443
Chloroethane	ND		350	140	ppb v/v			02/08/14 11:30	443
Chloroform	450		130	42	ppb v/v			02/08/14 11:30	443
Chloromethane	ND		350	87	ppb v/v			02/08/14 11:30	443
Dibromochloromethane	ND		180	35	ppb v/v			02/08/14 11:30	443
1,2-Dibromoethane (EDB)	ND		350	33	ppb v/v			02/08/14 11:30	443
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		180	69	ppb v/v			02/08/14 11:30	443
1,2-Dichlorobenzene	ND		180	58	ppb v/v			02/08/14 11:30	443
1,3-Dichlorobenzene	ND		180	49	ppb v/v			02/08/14 11:30	443
1,4-Dichlorobenzene	ND		180	66	ppb v/v			02/08/14 11:30	443
Dichlorodifluoromethane	72	J	180	64	ppb v/v			02/08/14 11:30	443
1,1-Dichloroethane	33	J	130	32	ppb v/v			02/08/14 11:30	443
1,2-Dichloroethane	72	J	350	39	ppb v/v			02/08/14 11:30	443
1,1-Dichloroethene	970		350	57	ppb v/v			02/08/14 11:30	443
cis-1,2-Dichloroethene	ND		180	39	ppb v/v			02/08/14 11:30	443
trans-1,2-Dichloroethene	ND		180	44	ppb v/v			02/08/14 11:30	443
1,2-Dichloropropane	180		180	110	ppb v/v			02/08/14 11:30	443
cis-1,3-Dichloropropene	ND		180	46	ppb v/v			02/08/14 11:30	443
trans-1,3-Dichloropropene	ND		180	39	ppb v/v			02/08/14 11:30	443
Ethylbenzene	72	J	180	28	ppb v/v			02/08/14 11:30	443
4-Ethyltoluene	ND		180	83	ppb v/v			02/08/14 11:30	443
Hexachlorobutadiene	ND		890	190	ppb v/v			02/08/14 11:30	443

TestAmerica Sacramento

TestAmerica Job ID: 320-5780-1

Lab Sample ID: 320-5780-13

Matrix: Air

Client: Sandia National Laboratories

Project/Site: CWL

Client Sample ID: 095141-001/CWL-D1-240 Lab Sample ID: 320-5780-13

Date Collected: 01/16/14 09:18 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Hexanone	ND		180	39	ppb v/v			02/08/14 11:30	443
4-Methyl-2-pentanone (MIBK)	ND		180	60	ppb v/v			02/08/14 11:30	443
Methylene Chloride	56	J	180	32	ppb v/v			02/08/14 11:30	443
Styrene	ND		180	26	ppb v/v			02/08/14 11:30	443
1,1,2,2-Tetrachloroethane	ND		180	31	ppb v/v			02/08/14 11:30	443
Tetrachloroethene	470		180	23	ppb v/v			02/08/14 11:30	443
Toluene	380		180	23	ppb v/v			02/08/14 11:30	443
1,1,2-Trichloro-1,2,2-trifluoroetha	2500		180	72	ppb v/v			02/08/14 11:30	443
ne									
1,2,4-Trichlorobenzene	ND		890	190	ppb v/v			02/08/14 11:30	443
1,1,1-Trichloroethane	66	J	130	29	ppb v/v			02/08/14 11:30	443
1,1,2-Trichloroethane	ND		180	30	ppb v/v			02/08/14 11:30	443
Trichloroethene	19000		180	47	ppb v/v			02/08/14 11:30	443
Trichlorofluoromethane	530		180	87	ppb v/v			02/08/14 11:30	443
1,2,4-Trimethylbenzene	ND		350	72	ppb v/v			02/08/14 11:30	443
1,3,5-Trimethylbenzene	ND		180	55	ppb v/v			02/08/14 11:30	443
Vinyl acetate	ND		350	64	ppb v/v			02/08/14 11:30	443
Vinyl chloride	ND		180	53	ppb v/v			02/08/14 11:30	443
m,p-Xylene	310	J	350	44	ppb v/v			02/08/14 11:30	443
o-Xylene	90	J	180	24	ppb v/v			02/08/14 11:30	443
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130					02/08/14 11:30	443
1,2-Dichloroethane-d4 (Surr)	98		70 - 130					02/08/14 11:30	443

_				
Toluene-d8 (Surr)	104	70 - 130	02/08/14 11:30	443
1,2-Dichloroethane-d4 (Surr)	98	70 - 130	02/08/14 11:30	443
4-Bromofluorobenzene (Surr)	109	70 - 130	02/08/14 11:30	443

Method: TO-15 - Volatile Organic Compounds in Ambient Air - RA

Analyte	Result	Qualifier	KL	MIDL	Unit	D	Prepared	Analyzed	DII Fac
Acetone	870	J	2200	79	ppb v/v			02/13/14 09:23	443
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130					02/13/14 09:23	443
1,2-Dichloroethane-d4 (Surr)	97		70 - 130					02/13/14 09:23	443
Toluene-d8 (Surr)	105		70 - 130					02/13/14 09:23	443
	Acetone Surrogate 4-Bromofluorobenzene (Surr) 1,2-Dichloroethane-d4 (Surr)	Acetone 870 Surrogate %Recovery 4-Bromofluorobenzene (Surr) 107 1,2-Dichloroethane-d4 (Surr) 97	Acetone 870 J Surrogate %Recovery Qualifier 4-Bromofluorobenzene (Surr) 107 1,2-Dichloroethane-d4 (Surr) 97	Acetone 870 J 2200 Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 107 70 - 130 1,2-Dichloroethane-d4 (Surr) 97 70 - 130	Acetone 870 J 2200 79 Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 107 70 - 130 1,2-Dichloroethane-d4 (Surr) 97 70 - 130	Acetone 870 J 2200 79 ppb v/v Surrogate %Recovery 4-Bromofluorobenzene (Surr) Qualifier Limits 4-Bromofluorobenzene (Surr) 107 70 - 130 1,2-Dichloroethane-d4 (Surr) 97 70 - 130	Acetone 870 J 2200 79 ppb v/v Surrogate %Recovery 4-Bromofluorobenzene (Surr) Qualifier 107 70 - 130 Limits 70 - 130 1,2-Dichloroethane-d4 (Surr) 97 70 - 130 70 - 130	Acetone 870 J 2200 79 ppb v/v Surrogate %Recovery 4-Bromofluorobenzene (Surr) Qualifier 107 70 - 130 Limits 70 - 130 Prepared 70 - 130 1,2-Dichloroethane-d4 (Surr) 97 70 - 130 70 - 130 70 - 130	Acetone 870 J 2200 79 ppb v/v 02/13/14 09:23 Surrogate %Recovery 4-Bromofluorobenzene (Surr) 107 TO - 130 Prepared Analyzed 4-Bromofluorobenzene (Surr) 107 70 - 130 02/13/14 09:23 1,2-Dichloroethane-d4 (Surr) 97 70 - 130 02/13/14 09:23

Client Sample ID: 095142-001/CWL-D1-350 Lab Sample ID: 320-5780-14

Date Collected: 01/16/14 09:31 Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		180	35	ppb v/v			02/08/14 12:18	442
Benzyl chloride	ND		350	72	ppb v/v			02/08/14 12:18	442
Bromodichloromethane	ND		130	29	ppb v/v			02/08/14 12:18	442
Bromoform	ND		180	31	ppb v/v			02/08/14 12:18	442
Bromomethane	ND		350	150	ppb v/v			02/08/14 12:18	442
2-Butanone (MEK)	ND		350	88	ppb v/v			02/08/14 12:18	442
Carbon disulfide	ND		350	34	ppb v/v			02/08/14 12:18	442
Carbon tetrachloride	ND		350	28	ppb v/v			02/08/14 12:18	442

TestAmerica Sacramento

TestAmerica Job ID: 320-5780-1

Matrix: Air

Client: Sandia National Laboratories

Project/Site: CWL

Client Sample ID: 095142-001/CWL-D1-350 Lab Sample ID: 320-5780-14

Date Collected: 01/16/14 09:31 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	_	Qualifier	RL	MDL		D Prepared	Analyzed	Dil Fa
Chlorobenzene	ND		130	28	ppb v/v		02/08/14 12:18	44
Chloroethane	ND		350	140	ppb v/v		02/08/14 12:18	44
Chloroform	ND		130	42	ppb v/v		02/08/14 12:18	44
Chloromethane	ND		350	87	ppb v/v		02/08/14 12:18	44
Dibromochloromethane	ND		180	35	ppb v/v		02/08/14 12:18	44
1,2-Dibromoethane (EDB)	ND		350	33	ppb v/v		02/08/14 12:18	44
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		180	69	ppb v/v		02/08/14 12:18	44
1,2-Dichlorobenzene	ND		180	57	ppb v/v		02/08/14 12:18	44
1,3-Dichlorobenzene	ND		180	49	ppb v/v		02/08/14 12:18	44
1,4-Dichlorobenzene	ND		180	66	ppb v/v		02/08/14 12:18	44
Dichlorodifluoromethane	ND		180	64	ppb v/v		02/08/14 12:18	44
1,1-Dichloroethane	ND		130	32	ppb v/v		02/08/14 12:18	44
1,2-Dichloroethane	ND		350	39	ppb v/v		02/08/14 12:18	44
1,1-Dichloroethene	510		350	57	ppb v/v		02/08/14 12:18	44
cis-1,2-Dichloroethene	ND		180	39	ppb v/v		02/08/14 12:18	44
trans-1,2-Dichloroethene	ND		180	44	ppb v/v		02/08/14 12:18	44
1,2-Dichloropropane	ND		180	110	ppb v/v		02/08/14 12:18	44
cis-1,3-Dichloropropene	ND		180	46	ppb v/v		02/08/14 12:18	44
trans-1,3-Dichloropropene	ND		180	39	ppb v/v		02/08/14 12:18	44
Ethylbenzene	61	J	180	28	ppb v/v		02/08/14 12:18	44
4-Ethyltoluene	ND		180	83	ppb v/v		02/08/14 12:18	44
Hexachlorobutadiene	ND		880		ppb v/v		02/08/14 12:18	44
2-Hexanone	ND		180		ppb v/v		02/08/14 12:18	44
4-Methyl-2-pentanone (MIBK)	ND		180		ppb v/v		02/08/14 12:18	44
Methylene Chloride	61	J	180		ppb v/v		02/08/14 12:18	44
Styrene	ND		180		ppb v/v		02/08/14 12:18	44
1,1,2,2-Tetrachloroethane	ND		180	30	ppb v/v		02/08/14 12:18	44
Tetrachloroethene	220		180		ppb v/v		02/08/14 12:18	44
Toluene	310		180		ppb v/v		02/08/14 12:18	44
1,1,2-Trichloro-1,2,2-trifluoroetha	1300		180		ppb v/v		02/08/14 12:18	44
ne					FF			
1,2,4-Trichlorobenzene	ND		880	190	ppb v/v		02/08/14 12:18	44
1,1,1-Trichloroethane	ND		130	29	ppb v/v		02/08/14 12:18	44
1,1,2-Trichloroethane	ND		180	30	ppb v/v		02/08/14 12:18	44
Trichloroethene	8500		180	46	ppb v/v		02/08/14 12:18	44
Trichlorofluoromethane	300		180	87	ppb v/v		02/08/14 12:18	44
1,2,4-Trimethylbenzene	ND		350	72	ppb v/v		02/08/14 12:18	44
1,3,5-Trimethylbenzene	ND		180	55	ppb v/v		02/08/14 12:18	44
Vinyl acetate	ND		350		ppb v/v		02/08/14 12:18	44
Vinyl chloride	ND		180		ppb v/v		02/08/14 12:18	44
m,p-Xylene	270	J	350		ppb v/v		02/08/14 12:18	44
o-Xylene	81		180		ppb v/v		02/08/14 12:18	44
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	106		70 - 130				02/08/14 12:18	44
4-Bromofluorobenzene (Surr)	109		70 - 130				02/13/14 10:11	44
1,2-Dichloroethane-d4 (Surr)	97		70 - 130				02/08/14 12:18	44
1,2-Dichloroethane-d4 (Surr)	98		70 - 130				02/13/14 10:11	44
Toluene-d8 (Surr)	106		70 - 130				02/08/14 12:18	44

TestAmerica Sacramento

TestAmerica Job ID: 320-5780-1

Client: Sandia National Laboratories

Project/Site: CWL

Client Sample ID: 095142-001/CWL-D1-350 Lab Sample ID: 320-5780-14

Date Collected: 01/16/14 09:31 Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	106		70 - 130		02/13/14 10:11	442

Method: TO-15 - Volatile Organ	nic Compounds in Ambient Air - RA		
Analyte	Result Qualifier	RL	MDL Unit

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	1200		1100	39	ppb v/v			02/13/14 20:35	221
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130			-		02/13/14 20:35	221
1,2-Dichloroethane-d4 (Surr)	98		70 - 130					02/13/14 20:35	221
Toluene-d8 (Surr)	106		70 - 130					02/13/14 20:35	221

Client Sample ID: 095143-001/CWL-D1-470

Date Collected: 01/16/14 09:37 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	5.4	J	22	0.79	ppb v/v			02/10/14 02:43	4.45
Benzene	ND		5.4	1.1	ppb v/v			02/08/14 13:07	13.4
Benzyl chloride	ND		11	2.2	ppb v/v			02/08/14 13:07	13.4
Bromodichloromethane	ND		4.0	0.88	ppb v/v			02/08/14 13:07	13.4
Bromoform	ND		5.4	0.94	ppb v/v			02/08/14 13:07	13.4
Bromomethane	ND		11	4.5	ppb v/v			02/08/14 13:07	13.4
2-Butanone (MEK)	ND		11	2.7	ppb v/v			02/08/14 13:07	13.4
Carbon disulfide	ND		11	1.0	ppb v/v			02/08/14 13:07	13.4
Carbon tetrachloride	1.5	J	11	0.86	ppb v/v			02/08/14 13:07	13.4
Chlorobenzene	ND		4.0	0.86	ppb v/v			02/08/14 13:07	13.4
Chloroethane	ND		11	4.1	ppb v/v			02/08/14 13:07	13.4
Chloroform	1.5	J	4.0	1.3	ppb v/v			02/08/14 13:07	13.4
Chloromethane	ND		11	2.6	ppb v/v			02/08/14 13:07	13.4
Dibromochloromethane	ND		5.4	1.1	ppb v/v			02/08/14 13:07	13.4
1,2-Dibromoethane (EDB)	ND		11	1.0	ppb v/v			02/08/14 13:07	13.4
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		5.4	2.1	ppb v/v			02/08/14 13:07	13.4
1,2-Dichlorobenzene	ND		5.4	1.7	ppb v/v			02/08/14 13:07	13.4
1,3-Dichlorobenzene	ND		5.4	1.5	ppb v/v			02/08/14 13:07	13.4
1,4-Dichlorobenzene	ND		5.4	2.0	ppb v/v			02/08/14 13:07	13.4
Dichlorodifluoromethane	8.7		5.4	1.9	ppb v/v			02/08/14 13:07	13.4
1,1-Dichloroethane	ND		4.0	0.96	ppb v/v			02/08/14 13:07	13.4
1,2-Dichloroethane	ND		11	1.2	ppb v/v			02/08/14 13:07	13.4
1,1-Dichloroethene	22		11	1.7	ppb v/v			02/08/14 13:07	13.4
cis-1,2-Dichloroethene	ND		5.4	1.2	ppb v/v			02/08/14 13:07	13.4
trans-1,2-Dichloroethene	ND		5.4	1.3	ppb v/v			02/08/14 13:07	13.4
1,2-Dichloropropane	ND		5.4	3.2	ppb v/v			02/08/14 13:07	13.4
cis-1,3-Dichloropropene	ND		5.4	1.4	ppb v/v			02/08/14 13:07	13.4
trans-1,3-Dichloropropene	ND		5.4	1.2	ppb v/v			02/08/14 13:07	13.4
Ethylbenzene	ND		5.4	0.84	ppb v/v			02/08/14 13:07	13.4
4-Ethyltoluene	ND		5.4	2.5	ppb v/v			02/08/14 13:07	13.4
Hexachlorobutadiene	ND		27	5.8	ppb v/v			02/08/14 13:07	13.4

TestAmerica Sacramento

TestAmerica Job ID: 320-5780-1

Lab Sample ID: 320-5780-15

Matrix: Air

Client: Sandia National Laboratories

Project/Site: CWL

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Vinyl acetate

Vinyl chloride

m,p-Xylene

Client Sample ID: 095143-001/CWL-D1-470 Lab Sample ID: 320-5780-15

Date Collected: 01/16/14 09:37

Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

ND

ND

ND

ND

ND

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Hexanone	ND		5.4	1.2	ppb v/v			02/08/14 13:07	13.4
4-Methyl-2-pentanone (MIBK)	ND		5.4	1.8	ppb v/v			02/08/14 13:07	13.4
Methylene Chloride	4.4	J	5.4	0.96	ppb v/v			02/08/14 13:07	13.4
Styrene	ND		5.4	0.79	ppb v/v			02/08/14 13:07	13.4
1,1,2,2-Tetrachloroethane	ND		5.4	0.92	ppb v/v			02/08/14 13:07	13.4
Tetrachloroethene	5.0	J	5.4	0.68	ppb v/v			02/08/14 13:07	13.4
Toluene	ND		5.4	0.68	ppb v/v			02/08/14 13:07	13.4
1,1,2-Trichloro-1,2,2-trifluoroetha	150		5.4	2.2	ppb v/v			02/08/14 13:07	13.4
ne									
1,2,4-Trichlorobenzene	ND		27	5.8	ppb v/v			02/08/14 13:07	13.4
1,1,1-Trichloroethane	ND		4.0	0.87	ppb v/v			02/08/14 13:07	13.4
1,1,2-Trichloroethane	ND		5.4	0.90	ppb v/v			02/08/14 13:07	13.4
Trichloroethene	160		5.4	1.4	ppb v/v			02/08/14 13:07	13.4
Trichlorofluoromethane	39		5.4	2.6	ppb v/v			02/08/14 13:07	13.4

o-Xylene	ND	5.4	0.72 ppb v/v		02/08/14 13:07	13.4
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105	70 - 130			02/08/14 13:07	13.4
4-Bromofluorobenzene (Surr)	104	70 - 130			02/10/14 02:43	4.45
1,2-Dichloroethane-d4 (Surr)	100	70 - 130			02/08/14 13:07	13.4
1,2-Dichloroethane-d4 (Surr)	98	70 - 130			02/10/14 02:43	4.45
Toluene-d8 (Surr)	105	70 - 130			02/08/14 13:07	13.4
Toluene-d8 (Surr)	106	70 - 130			02/10/14 02:43	4.45

11

5.4

11

5.4

11

2.2 ppb v/v

1.7 ppb v/v

1.9 ppb v/v

1.6 ppb v/v

1.3 ppb v/v

Client Sample ID: 095144-001/CWL-D1-FB1 Lab Sample ID: 320-5780-16

Date Collected: 01/16/14 09:43 Matrix: Air

Sample Container: Summa Canister 6L

Date Received: 01/22/14 09:15

Method: TO-15 - Volatile Organic Compounds in Ambient Air Result Qualifier Dil Fac Analyte RL MDL Unit D Prepared Analyzed Benzene ND 0.40 0.079 ppb v/v 02/08/14 13:59 ND Benzyl chloride 0.80 02/08/14 13:59 0.16 ppb v/v 1 ND Bromodichloromethane 0.30 0.066 ppb v/v 02/08/14 13:59 1 Bromoform ND 0.40 0.070 ppb v/v 02/08/14 13:59 Bromomethane ND 0.80 0.34 ppb v/v 02/08/14 13:59 0.30 0.80 0.20 ppb v/v 02/08/14 13:59 2-Butanone (MEK) ND 0.80 Carbon disulfide 0.078 ppb v/v 02/08/14 13:59 Carbon tetrachloride ND 0.80 0.064 ppb v/v 02/08/14 13:59 Chlorobenzene ND 0.30 0.064 ppb v/v 02/08/14 13:59 Chloroethane ND 0.80 02/08/14 13:59 0.31 ppb v/v ND 0.30 Chloroform 0.095 ppb v/v 02/08/14 13:59 ND 0.80 02/08/14 13:59 Chloromethane 0.20 ppb v/v ND Dibromochloromethane 0.40 0.079 ppb v/v 02/08/14 13:59

TestAmerica Sacramento

TestAmerica Job ID: 320-5780-1

02/08/14 13:07

02/08/14 13:07

02/08/14 13:07

02/08/14 13:07

02/08/14 13:07

13.4

13.4

13.4

13.4

13.4

Client: Sandia National Laboratories

Project/Site: CWL

Client Sample ID: 095144-001/CWL-D1-FB1

Date Collected: 01/16/14 09:43

Lab Sample ID: 320-5780-16

Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.80	0.075	ppb v/v			02/08/14 13:59	1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.40	0.16	ppb v/v			02/08/14 13:59	1
1,2-Dichlorobenzene	ND		0.40	0.13	ppb v/v			02/08/14 13:59	1
1,3-Dichlorobenzene	ND		0.40	0.11	ppb v/v			02/08/14 13:59	1
1,4-Dichlorobenzene	ND		0.40	0.15	ppb v/v			02/08/14 13:59	1
Dichlorodifluoromethane	ND		0.40	0.15	ppb v/v			02/08/14 13:59	1
1,1-Dichloroethane	ND		0.30	0.072	ppb v/v			02/08/14 13:59	1
1,2-Dichloroethane	ND		0.80	0.088	ppb v/v			02/08/14 13:59	1
1,1-Dichloroethene	ND		0.80	0.13	ppb v/v			02/08/14 13:59	1
cis-1,2-Dichloroethene	ND		0.40	0.089	ppb v/v			02/08/14 13:59	1
trans-1,2-Dichloroethene	ND		0.40	0.10	ppb v/v			02/08/14 13:59	1
1,2-Dichloropropane	ND		0.40	0.24	ppb v/v			02/08/14 13:59	1
cis-1,3-Dichloropropene	ND		0.40	0.10	ppb v/v			02/08/14 13:59	1
trans-1,3-Dichloropropene	ND		0.40		ppb v/v			02/08/14 13:59	1
Ethylbenzene	ND		0.40		ppb v/v			02/08/14 13:59	1
4-Ethyltoluene	ND		0.40	0.19	ppb v/v			02/08/14 13:59	1
Hexachlorobutadiene	ND		2.0		ppb v/v			02/08/14 13:59	1
2-Hexanone	ND		0.40	0.087	ppb v/v			02/08/14 13:59	1
4-Methyl-2-pentanone (MIBK)	ND		0.40	0.14	ppb v/v			02/08/14 13:59	1
Methylene Chloride	ND		0.40	0.072	ppb v/v			02/08/14 13:59	1
Styrene	ND		0.40		ppb v/v			02/08/14 13:59	1
1,1,2,2-Tetrachloroethane	ND		0.40		ppb v/v			02/08/14 13:59	1
Tetrachloroethene	ND		0.40	0.051	ppb v/v			02/08/14 13:59	1
Toluene	ND		0.40	0.051	ppb v/v			02/08/14 13:59	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.40	0.16	ppb v/v			02/08/14 13:59	1
1,2,4-Trichlorobenzene	ND		2.0	0.43	ppb v/v			02/08/14 13:59	1
1,1,1-Trichloroethane	ND		0.30	0.065	ppb v/v			02/08/14 13:59	1
1,1,2-Trichloroethane	ND		0.40	0.067	ppb v/v			02/08/14 13:59	1
Trichloroethene	ND		0.40	0.11	ppb v/v			02/08/14 13:59	1
Trichlorofluoromethane	ND		0.40	0.20	ppb v/v			02/08/14 13:59	1
1,2,4-Trimethylbenzene	ND		0.80	0.16	ppb v/v			02/08/14 13:59	1
1,3,5-Trimethylbenzene	ND		0.40	0.13	ppb v/v			02/08/14 13:59	1
Vinyl acetate	ND		0.80	0.15	ppb v/v			02/08/14 13:59	1
Vinyl chloride	ND		0.40		ppb v/v			02/08/14 13:59	1
m,p-Xylene	ND		0.80	0.10	ppb v/v			02/08/14 13:59	1
o-Xylene	ND		0.40	0.054	ppb v/v			02/08/14 13:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130			-	•	02/08/14 13:59	1
1,2-Dichloroethane-d4 (Surr)	99		70 - 130					02/08/14 13:59	1
Toluene-d8 (Surr)	105		70 - 130					02/08/14 13:59	1
Method: TO-15 - Volatile Organic	Compounds i	n Amhient	Δir - RΔ						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	1.9		5.0		ppb v/v		•	02/13/14 11:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130			-	<u> </u>	02/13/14 11:03	1
1,2-Dichloroethane-d4 (Surr)	97		70 - 130					02/13/14 11:03	1

TestAmerica Sacramento

Client: Sandia National Laboratories

Project/Site: CWL

Client Sample ID: 095144-001/CWL-D1-FB1 Lab Sample ID: 320-5780-16

Date Collected: 01/16/14 09:43 East Sample 1B. 325-3765-16

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Organic Compounds in Ambient Air - RA (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	105		70 - 130		02/13/14 11:03	1

Client Sample ID: 095145-001/CWL-D2-120 Lab Sample ID: 320-5780-17

Date Collected: 01/16/14 10:53 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	130	26	ppb v/v			02/08/14 14:47	324
Benzyl chloride	ND	260	53	ppb v/v			02/08/14 14:47	324
Bromodichloromethane	ND	97	21	ppb v/v			02/08/14 14:47	324
Bromoform	ND	130	23	ppb v/v			02/08/14 14:47	324
Bromomethane	ND	260	110	ppb v/v			02/08/14 14:47	324
2-Butanone (MEK)	65 J	260	64	ppb v/v			02/08/14 14:47	324
Carbon disulfide	ND	260	25	ppb v/v			02/08/14 14:47	324
Carbon tetrachloride	ND	260	21	ppb v/v			02/08/14 14:47	324
Chlorobenzene	ND	97	21	ppb v/v			02/08/14 14:47	324
Chloroethane	ND	260	100	ppb v/v			02/08/14 14:47	324
Chloroform	650	97	31	ppb v/v			02/08/14 14:47	324
Chloromethane	ND	260	64	ppb v/v			02/08/14 14:47	324
Dibromochloromethane	ND	130	26	ppb v/v			02/08/14 14:47	324
1,2-Dibromoethane (EDB)	ND	260	24	ppb v/v			02/08/14 14:47	324
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	130	50	ppb v/v			02/08/14 14:47	324
1,2-Dichlorobenzene	ND	130	42	ppb v/v			02/08/14 14:47	324
1,3-Dichlorobenzene	ND	130	36	ppb v/v			02/08/14 14:47	324
1,4-Dichlorobenzene	ND	130	48	ppb v/v			02/08/14 14:47	324
Dichlorodifluoromethane	49 J	130	47	ppb v/v			02/08/14 14:47	324
1,1-Dichloroethane	ND	97	23	ppb v/v			02/08/14 14:47	324
1,2-Dichloroethane	95 J	260	29	ppb v/v			02/08/14 14:47	324
1,1-Dichloroethene	560	260	42	ppb v/v			02/08/14 14:47	324
cis-1,2-Dichloroethene	ND	130	29	ppb v/v			02/08/14 14:47	324
trans-1,2-Dichloroethene	ND	130	32	ppb v/v			02/08/14 14:47	324
1,2-Dichloropropane	210	130	78	ppb v/v			02/08/14 14:47	324
cis-1,3-Dichloropropene	ND	130	34	ppb v/v			02/08/14 14:47	324
trans-1,3-Dichloropropene	ND	130	29	ppb v/v			02/08/14 14:47	324
Ethylbenzene	74 J	130	20	ppb v/v			02/08/14 14:47	324
4-Ethyltoluene	ND	130	61	ppb v/v			02/08/14 14:47	324
Hexachlorobutadiene	ND	650	140	ppb v/v			02/08/14 14:47	324
2-Hexanone	ND	130	28	ppb v/v			02/08/14 14:47	324
4-Methyl-2-pentanone (MIBK)	ND	130	44	ppb v/v			02/08/14 14:47	324
Methylene Chloride	57 J	130	23	ppb v/v			02/08/14 14:47	324
Styrene	ND	130	19	ppb v/v			02/08/14 14:47	324
1,1,2,2-Tetrachloroethane	ND	130	22	ppb v/v			02/08/14 14:47	324
Tetrachloroethene	530	130	17	ppb v/v			02/08/14 14:47	324
Toluene	350	130	17	ppb v/v			02/08/14 14:47	324
1,1,2-Trichloro-1,2,2-trifluoroetha	1600	130	53	ppb v/v			02/08/14 14:47	324
ne								

TestAmerica Sacramento

Client: Sandia National Laboratories

Project/Site: CWL

Client Sample ID: 095145-001/CWL-D2-120 Lab Sample ID: 320-5780-17

Date Collected: 01/16/14 10:53 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND		650	140	ppb v/v			02/08/14 14:47	324
1,1,1-Trichloroethane	65	J	97	21	ppb v/v			02/08/14 14:47	324
1,1,2-Trichloroethane	ND		130	22	ppb v/v			02/08/14 14:47	324
Trichloroethene	13000		130	34	ppb v/v			02/08/14 14:47	324
Trichlorofluoromethane	380		130	64	ppb v/v			02/08/14 14:47	324
1,2,4-Trimethylbenzene	ND		260	52	ppb v/v			02/08/14 14:47	324
1,3,5-Trimethylbenzene	ND		130	41	ppb v/v			02/08/14 14:47	324
Vinyl acetate	ND		260	47	ppb v/v			02/08/14 14:47	324
Vinyl chloride	ND		130	39	ppb v/v			02/08/14 14:47	324
m,p-Xylene	310		260	32	ppb v/v			02/08/14 14:47	324
o-Xylene	96	J	130	17	ppb v/v			02/08/14 14:47	324
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130			-		02/08/14 14:47	324
1,2-Dichloroethane-d4 (Surr)	99		70 - 130					02/08/14 14:47	324
Toluene-d8 (Surr)	105		70 - 130					02/08/14 14:47	324
Method: TO-15 - Volatile Orga	nic Compounds i	n Ambient	Air - RA						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	400	J	1600	58	ppb v/v			02/13/14 21:24	324
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107	·-	70 - 130			-		02/13/14 21:24	324

70 - 130

70 - 130

Client Sample ID: 095146-001/CWL-D2-240

97

105

Date Collected: 01/16/14 10:58

1,2-Dichloroethane-d4 (Surr)

Toluene-d8 (Surr)

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		130	26	ppb v/v			02/08/14 15:36	328
Benzyl chloride	ND		260	53	ppb v/v			02/08/14 15:36	328
Bromodichloromethane	ND		98	22	ppb v/v			02/08/14 15:36	328
Bromoform	ND		130	23	ppb v/v			02/08/14 15:36	328
Bromomethane	ND		260	110	ppb v/v			02/08/14 15:36	328
2-Butanone (MEK)	ND		260	65	ppb v/v			02/08/14 15:36	328
Carbon disulfide	ND		260	26	ppb v/v			02/08/14 15:36	328
Carbon tetrachloride	53	J	260	21	ppb v/v			02/08/14 15:36	328
Chlorobenzene	ND		98	21	ppb v/v			02/08/14 15:36	328
Chloroethane	ND		260	100	ppb v/v			02/08/14 15:36	328
Chloroform	630		98	31	ppb v/v			02/08/14 15:36	328
Chloromethane	ND		260	65	ppb v/v			02/08/14 15:36	328
Dibromochloromethane	ND		130	26	ppb v/v			02/08/14 15:36	328
1,2-Dibromoethane (EDB)	ND		260	25	ppb v/v			02/08/14 15:36	328
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		130	51	ppb v/v			02/08/14 15:36	328
1,2-Dichlorobenzene	ND		130	43	ppb v/v			02/08/14 15:36	328

TestAmerica Sacramento

02/13/14 21:24

02/13/14 21:24

Lab Sample ID: 320-5780-18

324

324

Matrix: Air

Client: Sandia National Laboratories TestAmerica Job ID: 320-5780-1

Project/Site: CWL

Client Sample ID: 095146-001/CWL-D2-240 Lab Sample ID: 320-5780-18

Date Collected: 01/16/14 10:58 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Compounds i Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3-Dichlorobenzene	ND		130	36	ppb v/v			02/08/14 15:36	328
1,4-Dichlorobenzene	ND		130	49	ppb v/v			02/08/14 15:36	328
Dichlorodifluoromethane	64	J	130	48	ppb v/v			02/08/14 15:36	328
1,1-Dichloroethane	32	J	98	24	ppb v/v			02/08/14 15:36	328
1,2-Dichloroethane	80	J	260	29	ppb v/v			02/08/14 15:36	328
1,1-Dichloroethene	760		260	42	ppb v/v			02/08/14 15:36	328
cis-1,2-Dichloroethene	ND		130	29	ppb v/v			02/08/14 15:36	328
trans-1,2-Dichloroethene	ND		130	33	ppb v/v			02/08/14 15:36	328
1,2-Dichloropropane	290		130	79	ppb v/v			02/08/14 15:36	328
cis-1,3-Dichloropropene	ND		130	34	ppb v/v			02/08/14 15:36	328
trans-1,3-Dichloropropene	ND		130	29	ppb v/v			02/08/14 15:36	328
Ethylbenzene	61	J	130	21	ppb v/v			02/08/14 15:36	328
4-Ethyltoluene	ND		130	61	ppb v/v			02/08/14 15:36	328
Hexachlorobutadiene	ND		660	140	ppb v/v			02/08/14 15:36	328
2-Hexanone	ND		130	29	ppb v/v			02/08/14 15:36	328
4-Methyl-2-pentanone (MIBK)	ND		130	44	ppb v/v			02/08/14 15:36	328
Methylene Chloride	78	J	130	24	ppb v/v			02/08/14 15:36	328
Styrene	ND		130	19	ppb v/v			02/08/14 15:36	328
1,1,2,2-Tetrachloroethane	ND		130	23	ppb v/v			02/08/14 15:36	328
Tetrachloroethene	510		130	17	ppb v/v			02/08/14 15:36	328
Toluene	290		130	17	ppb v/v			02/08/14 15:36	328
1,1,2-Trichloro-1,2,2-trifluoroetha	2000		130		ppb v/v			02/08/14 15:36	328
ne									
1,2,4-Trichlorobenzene	ND		660	140	ppb v/v			02/08/14 15:36	328
1,1,1-Trichloroethane	63	J	98	21	ppb v/v			02/08/14 15:36	328
1,1,2-Trichloroethane	ND		130	22	ppb v/v			02/08/14 15:36	328
Trichloroethene	16000		130	34	ppb v/v			02/08/14 15:36	328
Trichlorofluoromethane	470		130	64	ppb v/v			02/08/14 15:36	328
1,2,4-Trimethylbenzene	ND		260	53	ppb v/v			02/08/14 15:36	328
1,3,5-Trimethylbenzene	ND		130	41	ppb v/v			02/08/14 15:36	328
Vinyl acetate	ND		260	48	ppb v/v			02/08/14 15:36	328
Vinyl chloride	ND		130	39	ppb v/v			02/08/14 15:36	328
m,p-Xylene	270		260	33	ppb v/v			02/08/14 15:36	328
o-Xylene	93	J	130	18	ppb v/v			02/08/14 15:36	328
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130			-		02/08/14 15:36	328
1,2-Dichloroethane-d4 (Surr)	102		70 - 130					02/08/14 15:36	328
Toluene-d8 (Surr)	106		70 - 130					02/08/14 15:36	328
Method: TO-15 - Volatile Organic	•			MDI	11-:4		Dwamawad	Analysed	Dil For
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Acetone	370	J	1400	49	ppb v/v			02/13/14 22:13	273
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130					02/13/14 22:13	273
1,2-Dichloroethane-d4 (Surr)	98		70 - 130					02/13/14 22:13	273
Toluene-d8 (Surr)	106		70 - 130					02/13/14 22:13	273

Client: Sandia National Laboratories

Project/Site: CWL

Client Sample ID: 095147-001/CWL-D2-350 Lab Sample ID: 320-5780-19

Date Collected: 01/16/14 11:04 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	1300	J	1600	57	ppb v/v			02/09/14 15:48	320
Benzene	ND		130	25	ppb v/v			02/09/14 15:48	320
Benzyl chloride	ND		260	52	ppb v/v			02/09/14 15:48	320
Bromodichloromethane	ND		96	21	ppb v/v			02/09/14 15:48	320
Bromoform	ND		130	22	ppb v/v			02/09/14 15:48	320
Bromomethane	ND		260	110	ppb v/v			02/09/14 15:48	320
2-Butanone (MEK)	100	J	260		ppb v/v			02/09/14 15:48	320
Carbon disulfide	ND		260	25	ppb v/v			02/09/14 15:48	320
Carbon tetrachloride	ND		260	20	ppb v/v			02/09/14 15:48	320
Chlorobenzene	ND		96		ppb v/v			02/09/14 15:48	320
Chloroethane	ND		260		ppb v/v			02/09/14 15:48	320
Chloroform	360		96		ppb v/v			02/09/14 15:48	320
Chloromethane	ND		260		ppb v/v			02/09/14 15:48	320
Dibromochloromethane	ND		130		ppb v/v			02/09/14 15:48	320
1,2-Dibromoethane (EDB)	ND		260		ppb v/v			02/09/14 15:48	320
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		130		ppb v/v			02/09/14 15:48	320
1,2-Dichlorobenzene	ND		130		ppb v/v			02/09/14 15:48	320
1,3-Dichlorobenzene	ND		130		ppb v/v			02/09/14 15:48	320
1,4-Dichlorobenzene	ND		130		ppb v/v			02/09/14 15:48	320
Dichlorodifluoromethane	50		130		ppb v/v			02/09/14 15:48	320
1,1-Dichloroethane	ND	J	96		ppb v/v			02/09/14 15:48	320
			260					02/09/14 15:48	320
1,2-Dichloroethane	75	J	260		ppb v/v				320
1,1-Dichloroethene	540 ND				ppb v/v			02/09/14 15:48	
cis-1,2-Dichloroethene	ND		130		ppb v/v			02/09/14 15:48	320
trans-1,2-Dichloroethene	ND		130		ppb v/v			02/09/14 15:48	320
1,2-Dichloropropane	130		130		ppb v/v			02/09/14 15:48	320
cis-1,3-Dichloropropene	ND		130		ppb v/v			02/09/14 15:48	320
trans-1,3-Dichloropropene	ND		130		ppb v/v			02/09/14 15:48	320
Ethylbenzene	100	J	130		ppb v/v			02/09/14 15:48	320
4-Ethyltoluene	ND		130		ppb v/v			02/09/14 15:48	320
Hexachlorobutadiene	ND		640		ppb v/v			02/09/14 15:48	320
2-Hexanone	ND		130		ppb v/v			02/09/14 15:48	320
4-Methyl-2-pentanone (MIBK)	49		130		ppb v/v			02/09/14 15:48	320
Methylene Chloride	90	J	130		ppb v/v			02/09/14 15:48	320
Styrene	46	J	130		ppb v/v			02/09/14 15:48	320
1,1,2,2-Tetrachloroethane	ND		130		ppb v/v			02/09/14 15:48	320
Tetrachloroethene	340		130	16	ppb v/v			02/09/14 15:48	320
Toluene	490		130	16	ppb v/v			02/09/14 15:48	320
1,1,2-Trichloro-1,2,2-trifluoroetha	1500		130	52	ppb v/v			02/09/14 15:48	320
ne 1,2,4-Trichlorobenzene	ND		640	140	nnh w/w			02/09/14 15:48	320
			640		ppb v/v				
1,1,1-Trichloroethane	43 ND	J	96 130		ppb v/v			02/09/14 15:48	320
1,1,2-Trichloroethane	ND		130		ppb v/v			02/09/14 15:48	320
Trichloroethene	9900		130		ppb v/v			02/09/14 15:48	320
Trichlorofluoromethane	350 ND		130		ppb v/v			02/09/14 15:48	320
1,2,4-Trimethylbenzene	ND		260		ppb v/v			02/09/14 15:48	320
1,3,5-Trimethylbenzene	ND		130		ppb v/v			02/09/14 15:48	320
Vinyl acetate	ND		260	46	ppb v/v			02/09/14 15:48	320

TestAmerica Sacramento

Client: Sandia National Laboratories

Project/Site: CWL

Client Sample ID: 095147-001/CWL-D2-350 Lab Sample ID: 320-5780-19

Date Collected: 01/16/14 11:04 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

	Method: TO-15 - Volatile	Organic Compounds in Ambient Air	(Continued)
ı	Analyto	Posult Qualifier	DI

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m,p-Xylene	440		260	32	ppb v/v			02/09/14 15:48	320
o-Xylene	140		130	17	ppb v/v			02/09/14 15:48	320
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130			-		02/09/14 15:48	320
1,2-Dichloroethane-d4 (Surr)	100		70 - 130					02/09/14 15:48	320
Toluene-d8 (Surr)	107		70 ₋ 130					02/09/14 15:48	320

Client Sample ID: 095148-001/CWL-D2-440 Lab Sample ID: 320-5780-20

Date Collected: 01/16/14 11:10 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	36		31	1.1	ppb v/v			02/09/14 16:37	6.25
Benzene	ND		2.5	0.49	ppb v/v			02/09/14 16:37	6.25
Benzyl chloride	ND		5.0	1.0	ppb v/v			02/09/14 16:37	6.25
Bromodichloromethane	ND		1.9	0.41	ppb v/v			02/09/14 16:37	6.25
Bromoform	ND		2.5	0.44	ppb v/v			02/09/14 16:37	6.25
Bromomethane	ND		5.0	2.1	ppb v/v			02/09/14 16:37	6.25
2-Butanone (MEK)	5.0		5.0	1.2	ppb v/v			02/09/14 16:37	6.25
Carbon disulfide	ND		5.0	0.49	ppb v/v			02/09/14 16:37	6.25
Carbon tetrachloride	0.44	J	5.0	0.40	ppb v/v			02/09/14 16:37	6.25
Chlorobenzene	ND		1.9	0.40	ppb v/v			02/09/14 16:37	6.25
Chloroethane	ND		5.0	1.9	ppb v/v			02/09/14 16:37	6.25
Chloroform	4.5		1.9	0.59	ppb v/v			02/09/14 16:37	6.25
Chloromethane	ND		5.0	1.2	ppb v/v			02/09/14 16:37	6.25
Dibromochloromethane	ND		2.5	0.49	ppb v/v			02/09/14 16:37	6.25
1,2-Dibromoethane (EDB)	ND		5.0	0.47	ppb v/v			02/09/14 16:37	6.25
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		2.5	0.97	ppb v/v			02/09/14 16:37	6.25
1,2-Dichlorobenzene	ND		2.5	0.81	ppb v/v			02/09/14 16:37	6.25
1,3-Dichlorobenzene	ND		2.5	0.69	ppb v/v			02/09/14 16:37	6.25
1,4-Dichlorobenzene	ND		2.5	0.93	ppb v/v			02/09/14 16:37	6.25
Dichlorodifluoromethane	0.98	J	2.5	0.91	ppb v/v			02/09/14 16:37	6.25
1,1-Dichloroethane	ND		1.9	0.45	ppb v/v			02/09/14 16:37	6.25
1,2-Dichloroethane	ND		5.0	0.55	ppb v/v			02/09/14 16:37	6.25
1,1-Dichloroethene	7.5		5.0	0.81	ppb v/v			02/09/14 16:37	6.25
cis-1,2-Dichloroethene	ND		2.5	0.56	ppb v/v			02/09/14 16:37	6.25
trans-1,2-Dichloroethene	ND		2.5	0.63	ppb v/v			02/09/14 16:37	6.25
1,2-Dichloropropane	ND		2.5	1.5	ppb v/v			02/09/14 16:37	6.25
cis-1,3-Dichloropropene	ND		2.5	0.65	ppb v/v			02/09/14 16:37	6.25
trans-1,3-Dichloropropene	ND		2.5	0.55	ppb v/v			02/09/14 16:37	6.25
Ethylbenzene	ND		2.5	0.39	ppb v/v			02/09/14 16:37	6.25
4-Ethyltoluene	ND		2.5	1.2	ppb v/v			02/09/14 16:37	6.25
Hexachlorobutadiene	ND		13	2.7	ppb v/v			02/09/14 16:37	6.25
2-Hexanone	ND		2.5	0.54	ppb v/v			02/09/14 16:37	6.25
4-Methyl-2-pentanone (MIBK)	ND		2.5	0.84	ppb v/v			02/09/14 16:37	6.25
Methylene Chloride	ND		2.5	0.45	ppb v/v			02/09/14 16:37	6.25

TestAmerica Sacramento

TestAmerica Job ID: 320-5780-1

Client: Sandia National Laboratories

Project/Site: CWL

Client Sample ID: 095148-001/CWL-D2-440 Lab Sample ID: 320-5780-20

Date Collected: 01/16/14 11:10 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	ND		2.5	0.37	ppb v/v			02/09/14 16:37	6.25
1,1,2,2-Tetrachloroethane	ND		2.5	0.43	ppb v/v			02/09/14 16:37	6.25
Tetrachloroethene	4.7		2.5	0.32	ppb v/v			02/09/14 16:37	6.25
Toluene	ND		2.5	0.32	ppb v/v			02/09/14 16:37	6.25
1,1,2-Trichloro-1,2,2-trifluoroetha	13		2.5	1.0	ppb v/v			02/09/14 16:37	6.25
ne									
1,2,4-Trichlorobenzene	ND		13	2.7	ppb v/v			02/09/14 16:37	6.25
1,1,1-Trichloroethane	ND		1.9	0.41	ppb v/v			02/09/14 16:37	6.25
1,1,2-Trichloroethane	ND		2.5	0.42	ppb v/v			02/09/14 16:37	6.25
Trichloroethene	140		2.5	0.66	ppb v/v			02/09/14 16:37	6.25
Trichlorofluoromethane	4.5		2.5	1.2	ppb v/v			02/09/14 16:37	6.25
1,2,4-Trimethylbenzene	ND		5.0	1.0	ppb v/v			02/09/14 16:37	6.25
1,3,5-Trimethylbenzene	ND		2.5	0.78	ppb v/v			02/09/14 16:37	6.25
Vinyl acetate	ND		5.0	0.91	ppb v/v			02/09/14 16:37	6.25
Vinyl chloride	ND		2.5	0.75	ppb v/v			02/09/14 16:37	6.25
m,p-Xylene	ND		5.0	0.63	ppb v/v			02/09/14 16:37	6.25
o-Xylene	ND		2.5	0.34	ppb v/v			02/09/14 16:37	6.25
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		70 - 130			_		02/09/14 16:37	6.25
1,2-Dichloroethane-d4 (Surr)	98		70 - 130					02/09/14 16:37	6.25
Toluene-d8 (Surr)	107		70 - 130					02/09/14 16:37	6.25

Client Sample ID: 095149-001/CWL-D2-470

Date Collected: 01/16/14 11:15

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	1600		650	23	ppb v/v			02/10/14 09:14	130
Benzene	19	J	52	10	ppb v/v			02/10/14 09:14	130
Benzyl chloride	22	J	100	21	ppb v/v			02/10/14 09:14	130
Bromodichloromethane	ND		39	8.6	ppb v/v			02/10/14 09:14	130
Bromoform	ND		52	9.1	ppb v/v			02/10/14 09:14	130
Bromomethane	ND		100	44	ppb v/v			02/10/14 09:14	130
2-Butanone (MEK)	140		100	26	ppb v/v			02/10/14 09:14	130
Carbon disulfide	ND		100	10	ppb v/v			02/10/14 09:14	130
Carbon tetrachloride	ND		100	8.3	ppb v/v			02/10/14 09:14	130
Chlorobenzene	ND		39	8.3	ppb v/v			02/10/14 09:14	130
Chloroethane	ND		100	40	ppb v/v			02/10/14 09:14	130
Chloroform	330		39	12	ppb v/v			02/10/14 09:14	130
Chloromethane	ND		100	26	ppb v/v			02/10/14 09:14	130
Dibromochloromethane	ND		52	10	ppb v/v			02/10/14 09:14	130
1,2-Dibromoethane (EDB)	ND		100	9.8	ppb v/v			02/10/14 09:14	130
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		52	20	ppb v/v			02/10/14 09:14	130
1,2-Dichlorobenzene	24	J	52	17	ppb v/v			02/10/14 09:14	130
1,3-Dichlorobenzene	21	J	52	14	ppb v/v			02/10/14 09:14	130
1,4-Dichlorobenzene	23	J	52	19	ppb v/v			02/10/14 09:14	130

TestAmerica Sacramento

TestAmerica Job ID: 320-5780-1

Lab Sample ID: 320-5780-21

Matrix: Air

Client: Sandia National Laboratories

Project/Site: CWL

Client Sample ID: 095149-001/CWL-D2-470 Lab Sample ID: 320-5780-21

Date Collected: 01/16/14 11:15 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	23	J	52	19	ppb v/v			02/10/14 09:14	130
1,1-Dichloroethane	12	J	39	9.4	ppb v/v			02/10/14 09:14	130
1,2-Dichloroethane	82	J	100	11	ppb v/v			02/10/14 09:14	130
1,1-Dichloroethene	200		100	17	ppb v/v			02/10/14 09:14	130
cis-1,2-Dichloroethene	ND		52	12	ppb v/v			02/10/14 09:14	130
trans-1,2-Dichloroethene	ND		52	13	ppb v/v			02/10/14 09:14	130
1,2-Dichloropropane	80		52	31	ppb v/v			02/10/14 09:14	130
cis-1,3-Dichloropropene	ND		52	14	ppb v/v			02/10/14 09:14	130
trans-1,3-Dichloropropene	ND		52	11	ppb v/v			02/10/14 09:14	130
Ethylbenzene	120		52	8.2	ppb v/v			02/10/14 09:14	130
4-Ethyltoluene	32	J	52	24	ppb v/v			02/10/14 09:14	130
Hexachlorobutadiene	ND		260	56	ppb v/v			02/10/14 09:14	130
2-Hexanone	38	J	52	11	ppb v/v			02/10/14 09:14	130
4-Methyl-2-pentanone (MIBK)	41	J	52	18	ppb v/v			02/10/14 09:14	130
Methylene Chloride	48	J	52	9.4	ppb v/v			02/10/14 09:14	130
Styrene	55		52	7.7	ppb v/v			02/10/14 09:14	130
1,1,2,2-Tetrachloroethane	ND		52	9.0	ppb v/v			02/10/14 09:14	130
Tetrachloroethene	260		52	6.6	ppb v/v			02/10/14 09:14	130
Toluene	620		52	6.6	ppb v/v			02/10/14 09:14	130
1,1,2-Trichloro-1,2,2-trifluoroetha	600		52	21	ppb v/v			02/10/14 09:14	130
ne									
1,2,4-Trichlorobenzene	89	J	260		ppb v/v			02/10/14 09:14	130
1,1,1-Trichloroethane	40		39		ppb v/v			02/10/14 09:14	130
1,1,2-Trichloroethane	ND		52		ppb v/v			02/10/14 09:14	130
Trichloroethene	4700		52		ppb v/v			02/10/14 09:14	130
Trichlorofluoromethane	160		52		ppb v/v			02/10/14 09:14	130
1,2,4-Trimethylbenzene	44	J	100	21	ppb v/v			02/10/14 09:14	130
1,3,5-Trimethylbenzene	23	J	52	16	ppb v/v			02/10/14 09:14	130
Vinyl acetate	ND		100	19	ppb v/v			02/10/14 09:14	130
Vinyl chloride	ND		52	16	ppb v/v			02/10/14 09:14	130
m,p-Xylene	530		100	13	ppb v/v			02/10/14 09:14	130

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130		02/09/14 17:26	325
4-Bromofluorobenzene (Surr)	109		70 - 130		02/10/14 09:14	130
1,2-Dichloroethane-d4 (Surr)	99		70 - 130		02/09/14 17:26	325
1,2-Dichloroethane-d4 (Surr)	99		70 - 130		02/10/14 09:14	130
Toluene-d8 (Surr)	107		70 - 130		02/09/14 17:26	325
Toluene-d8 (Surr)	109		70 - 130		02/10/14 09:14	130

52

160

7.0 ppb v/v

Client Sample ID: 095150-001/CWL-D2-FB1

Date Collected: 01/16/14 10:47

o-Xylene

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Lab Sample	ID:	320-5780-22
		Matrix: Air

02/10/14 09:14

TestAmerica Job ID: 320-5780-1

Matrix: Al

130

Method: TO-15 - Volatile Organic Compounds in Ambient Air									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		5.0	0.18	ppb v/v			02/09/14 18:20	1

Client: Sandia National Laboratories

Project/Site: CWL

Trichlorofluoromethane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Vinyl acetate

Vinyl chloride

m,p-Xylene

Client Sample ID: 095150-001/CWL-D2-FB1

Lab Sample ID: 320-5780-22 Date Collected: 01/16/14 10:47 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.40	0.079	ppb v/v			02/09/14 18:20	1
Benzyl chloride	ND		0.80	0.16	ppb v/v			02/09/14 18:20	1
Bromodichloromethane	ND		0.30	0.066	ppb v/v			02/09/14 18:20	1
Bromoform	ND		0.40	0.070	ppb v/v			02/09/14 18:20	1
Bromomethane	ND		0.80	0.34	ppb v/v			02/09/14 18:20	1
2-Butanone (MEK)	ND		0.80	0.20	ppb v/v			02/09/14 18:20	1
Carbon disulfide	ND		0.80	0.078	ppb v/v			02/09/14 18:20	1
Carbon tetrachloride	ND		0.80	0.064	ppb v/v			02/09/14 18:20	1
Chlorobenzene	ND		0.30	0.064	ppb v/v			02/09/14 18:20	
Chloroethane	ND		0.80	0.31	ppb v/v			02/09/14 18:20	1
Chloroform	ND		0.30	0.095	ppb v/v			02/09/14 18:20	1
Chloromethane	ND		0.80	0.20	ppb v/v			02/09/14 18:20	1
Dibromochloromethane	ND		0.40	0.079	ppb v/v			02/09/14 18:20	1
1,2-Dibromoethane (EDB)	ND		0.80	0.075	ppb v/v			02/09/14 18:20	1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.40	0.16	ppb v/v			02/09/14 18:20	1
1,2-Dichlorobenzene	ND		0.40	0.13	ppb v/v			02/09/14 18:20	1
1,3-Dichlorobenzene	ND		0.40	0.11	ppb v/v			02/09/14 18:20	1
1,4-Dichlorobenzene	ND		0.40	0.15	ppb v/v			02/09/14 18:20	1
Dichlorodifluoromethane	ND		0.40	0.15	ppb v/v			02/09/14 18:20	1
1,1-Dichloroethane	ND		0.30	0.072	ppb v/v			02/09/14 18:20	1
1,2-Dichloroethane	ND		0.80	0.088	ppb v/v			02/09/14 18:20	1
1,1-Dichloroethene	ND		0.80	0.13	ppb v/v			02/09/14 18:20	1
cis-1,2-Dichloroethene	ND		0.40	0.089	ppb v/v			02/09/14 18:20	1
trans-1,2-Dichloroethene	ND		0.40	0.10	ppb v/v			02/09/14 18:20	1
1,2-Dichloropropane	ND		0.40	0.24	ppb v/v			02/09/14 18:20	1
cis-1,3-Dichloropropene	ND		0.40	0.10	ppb v/v			02/09/14 18:20	1
trans-1,3-Dichloropropene	ND		0.40	0.088	ppb v/v			02/09/14 18:20	1
Ethylbenzene	ND		0.40	0.063	ppb v/v			02/09/14 18:20	1
4-Ethyltoluene	ND		0.40	0.19	ppb v/v			02/09/14 18:20	1
Hexachlorobutadiene	ND		2.0	0.43	ppb v/v			02/09/14 18:20	1
2-Hexanone	ND		0.40	0.087	ppb v/v			02/09/14 18:20	1
4-Methyl-2-pentanone (MIBK)	ND		0.40	0.14	ppb v/v			02/09/14 18:20	1
Methylene Chloride	ND		0.40	0.072	ppb v/v			02/09/14 18:20	1
Styrene	ND		0.40	0.059	ppb v/v			02/09/14 18:20	1
1,1,2,2-Tetrachloroethane	ND		0.40	0.069	ppb v/v			02/09/14 18:20	1
Tetrachloroethene	ND		0.40		ppb v/v			02/09/14 18:20	1
Toluene	ND		0.40	0.051	ppb v/v			02/09/14 18:20	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.40		ppb v/v			02/09/14 18:20	1
1,2,4-Trichlorobenzene	ND		2.0		ppb v/v			02/09/14 18:20	
1,1,1-Trichloroethane	ND		0.30	0.065	ppb v/v			02/09/14 18:20	1
1,1,2-Trichloroethane	ND		0.40	0.067	ppb v/v			02/09/14 18:20	1
Trichloroethene	0.39	J	0.40	0.11	ppb v/v			02/09/14 18:20	
			0 :-					00/00/44 40 00	

02/09/14 18:20

02/09/14 18:20

02/09/14 18:20

02/09/14 18:20

02/09/14 18:20

02/09/14 18:20

TestAmerica Job ID: 320-5780-1

0.40

0.80

0.40

0.80

0.40

0.80

0.20 ppb v/v

0.16 ppb v/v

0.13 ppb v/v

0.15 ppb v/v

0.12 ppb v/v

0.10 ppb v/v

ND

ND

ND

ND

ND

ND

1

1

1

Client: Sandia National Laboratories

Project/Site: CWL

Client Sample ID: 095150-001/CWL-D2-FB1 Lab Sample ID: 320-5780-22

Date Collected: 01/16/14 10:47

Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile	Organic Cor	mpounds in A	ا Ambient Air (ا	Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	ND		0.40	0.054	ppb v/v			02/09/14 18:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130			-		02/09/14 18:20	1
1,2-Dichloroethane-d4 (Surr)	99		70 - 130					02/09/14 18:20	1
Toluene-d8 (Surr)	104		70 - 130					02/09/14 18:20	1

Client Sample ID: 095151-001/CWL-D3-120

Date Collected: 01/16/14 11:37 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	1400		820	29	ppb v/v			02/09/14 19:09	164
Benzene	15	J	66	13	ppb v/v			02/09/14 19:09	164
Benzyl chloride	ND		130	27	ppb v/v			02/09/14 19:09	164
Bromodichloromethane	ND		49	11	ppb v/v			02/09/14 19:09	164
Bromoform	ND		66	11	ppb v/v			02/09/14 19:09	164
Bromomethane	ND		130	55	ppb v/v			02/09/14 19:09	164
2-Butanone (MEK)	110	J	130	33	ppb v/v			02/09/14 19:09	164
Carbon disulfide	ND		130	13	ppb v/v			02/09/14 19:09	164
Carbon tetrachloride	ND		130	10	ppb v/v			02/09/14 19:09	164
Chlorobenzene	ND		49	10	ppb v/v			02/09/14 19:09	164
Chloroethane	ND		130	51	ppb v/v			02/09/14 19:09	164
Chloroform	160		49	16	ppb v/v			02/09/14 19:09	164
Chloromethane	ND		130	32	ppb v/v			02/09/14 19:09	164
Dibromochloromethane	ND		66	13	ppb v/v			02/09/14 19:09	164
1,2-Dibromoethane (EDB)	ND		130	12	ppb v/v			02/09/14 19:09	164
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		66	25	ppb v/v			02/09/14 19:09	164
1,2-Dichlorobenzene	ND		66	21	ppb v/v			02/09/14 19:09	164
1,3-Dichlorobenzene	ND		66	18	ppb v/v			02/09/14 19:09	164
1,4-Dichlorobenzene	ND		66	24	ppb v/v			02/09/14 19:09	164
Dichlorodifluoromethane	ND		66	24	ppb v/v			02/09/14 19:09	164
1,1-Dichloroethane	ND		49	12	ppb v/v			02/09/14 19:09	164
1,2-Dichloroethane	70	J	130	14	ppb v/v			02/09/14 19:09	164
1,1-Dichloroethene	200		130	21	ppb v/v			02/09/14 19:09	164
cis-1,2-Dichloroethene	ND		66	15	ppb v/v			02/09/14 19:09	164
trans-1,2-Dichloroethene	ND		66	16	ppb v/v			02/09/14 19:09	164
1,2-Dichloropropane	90		66	39	ppb v/v			02/09/14 19:09	164
cis-1,3-Dichloropropene	ND		66	17	ppb v/v			02/09/14 19:09	164
trans-1,3-Dichloropropene	ND		66	14	ppb v/v			02/09/14 19:09	164
Ethylbenzene	90		66	10	ppb v/v			02/09/14 19:09	164
4-Ethyltoluene	ND		66	31	ppb v/v			02/09/14 19:09	164
Hexachlorobutadiene	ND		330	71	ppb v/v			02/09/14 19:09	164
2-Hexanone	ND		66	14	ppb v/v			02/09/14 19:09	164
4-Methyl-2-pentanone (MIBK)	ND		66	22	ppb v/v			02/09/14 19:09	164
Methylene Chloride	54	J	66	12	ppb v/v			02/09/14 19:09	164
Styrene	45	J	66	9.7	ppb v/v			02/09/14 19:09	164

TestAmerica Sacramento

TestAmerica Job ID: 320-5780-1

Lab Sample ID: 320-5780-23

Client: Sandia National Laboratories

Project/Site: CWL

Client Sample ID: 095151-001/CWL-D3-120 Lab Sample ID: 320-5780-23

Date Collected: 01/16/14 11:37 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		66	11	ppb v/v			02/09/14 19:09	164
Tetrachloroethene	99		66	8.4	ppb v/v			02/09/14 19:09	164
Toluene	460		66	8.4	ppb v/v			02/09/14 19:09	164
1,1,2-Trichloro-1,2,2-trifluoroetha	630		66	27	ppb v/v			02/09/14 19:09	164
ne									
1,2,4-Trichlorobenzene	ND		330	71	ppb v/v			02/09/14 19:09	164
1,1,1-Trichloroethane	16	J	49	11	ppb v/v			02/09/14 19:09	164
1,1,2-Trichloroethane	ND		66	11	ppb v/v			02/09/14 19:09	164
Trichloroethene	4100		66	17	ppb v/v			02/09/14 19:09	164
Trichlorofluoromethane	160		66	32	ppb v/v			02/09/14 19:09	164
1,2,4-Trimethylbenzene	30	J	130	27	ppb v/v			02/09/14 19:09	164
1,3,5-Trimethylbenzene	ND		66	21	ppb v/v			02/09/14 19:09	164
Vinyl acetate	ND		130	24	ppb v/v			02/09/14 19:09	164
Vinyl chloride	ND		66	20	ppb v/v			02/09/14 19:09	164
m,p-Xylene	440		130	16	ppb v/v			02/09/14 19:09	164
o-Xylene	150		66	8.9	ppb v/v			02/09/14 19:09	164
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130			_		02/09/14 19:09	164
1,2-Dichloroethane-d4 (Surr)	99		70 - 130					02/09/14 19:09	164
Toluene-d8 (Surr)	107		70 - 130					02/09/14 19:09	164

Client Sample ID: 095152-001/CWL-D3-170

Date Collected: 01/16/14 11:41

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	1400		810	29	ppb v/v			02/09/14 19:58	161
Benzene	19	J	64	13	ppb v/v			02/09/14 19:58	161
Benzyl chloride	ND		130	26	ppb v/v			02/09/14 19:58	161
Bromodichloromethane	ND		48	11	ppb v/v			02/09/14 19:58	161
Bromoform	ND		64	11	ppb v/v			02/09/14 19:58	161
Bromomethane	ND		130	54	ppb v/v			02/09/14 19:58	161
2-Butanone (MEK)	120	J	130	32	ppb v/v			02/09/14 19:58	161
Carbon disulfide	ND		130	13	ppb v/v			02/09/14 19:58	161
Carbon tetrachloride	ND		130	10	ppb v/v			02/09/14 19:58	161
Chlorobenzene	ND		48	10	ppb v/v			02/09/14 19:58	161
Chloroethane	ND		130	50	ppb v/v			02/09/14 19:58	161
Chloroform	160		48	15	ppb v/v			02/09/14 19:58	161
Chloromethane	ND		130	32	ppb v/v			02/09/14 19:58	161
Dibromochloromethane	ND		64	13	ppb v/v			02/09/14 19:58	161
1,2-Dibromoethane (EDB)	ND		130	12	ppb v/v			02/09/14 19:58	161
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		64	25	ppb v/v			02/09/14 19:58	161
1,2-Dichlorobenzene	ND		64	21	ppb v/v			02/09/14 19:58	161
1,3-Dichlorobenzene	ND		64	18	ppb v/v			02/09/14 19:58	161
1,4-Dichlorobenzene	ND		64	24	ppb v/v			02/09/14 19:58	161
Dichlorodifluoromethane	28	J	64	23	ppb v/v			02/09/14 19:58	161

TestAmerica Sacramento

TestAmerica Job ID: 320-5780-1

Lab Sample ID: 320-5780-24

Matrix: Air

Client: Sandia National Laboratories

Project/Site: CWL

Client Sample ID: 095152-001/CWL-D3-170 Lab Sample ID: 320-5780-24

Date Collected: 01/16/14 11:41 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	ND		48	12	ppb v/v			02/09/14 19:58	161
1,2-Dichloroethane	94	J	130	14	ppb v/v			02/09/14 19:58	161
1,1-Dichloroethene	260		130	21	ppb v/v			02/09/14 19:58	161
cis-1,2-Dichloroethene	ND		64	14	ppb v/v			02/09/14 19:58	161
trans-1,2-Dichloroethene	ND		64	16	ppb v/v			02/09/14 19:58	161
1,2-Dichloropropane	120		64	39	ppb v/v			02/09/14 19:58	161
cis-1,3-Dichloropropene	ND		64	17	ppb v/v			02/09/14 19:58	161
trans-1,3-Dichloropropene	ND		64	14	ppb v/v			02/09/14 19:58	161
Ethylbenzene	120		64	10	ppb v/v			02/09/14 19:58	161
4-Ethyltoluene	ND		64	30	ppb v/v			02/09/14 19:58	161
Hexachlorobutadiene	ND		320	70	ppb v/v			02/09/14 19:58	161
2-Hexanone	ND		64	14	ppb v/v			02/09/14 19:58	161
4-Methyl-2-pentanone (MIBK)	35	J	64	22	ppb v/v			02/09/14 19:58	161
Methylene Chloride	51	J	64	12	ppb v/v			02/09/14 19:58	161
Styrene	ND		64	9.5	ppb v/v			02/09/14 19:58	161
1,1,2,2-Tetrachloroethane	ND		64	11	ppb v/v			02/09/14 19:58	161
Tetrachloroethene	110		64	8.2	ppb v/v			02/09/14 19:58	161
Toluene	640		64	8.2	ppb v/v			02/09/14 19:58	161
1,1,2-Trichloro-1,2,2-trifluoroetha	800		64	26	ppb v/v			02/09/14 19:58	161
ne									
1,2,4-Trichlorobenzene	ND		320		ppb v/v			02/09/14 19:58	161
1,1,1-Trichloroethane	17	J	48		ppb v/v			02/09/14 19:58	161
1,1,2-Trichloroethane	ND		64		ppb v/v			02/09/14 19:58	161
Trichloroethene	5400		64		ppb v/v			02/09/14 19:58	161
Trichlorofluoromethane	200		64		ppb v/v			02/09/14 19:58	161
1,2,4-Trimethylbenzene	ND		130		ppb v/v			02/09/14 19:58	161
1,3,5-Trimethylbenzene	ND		64		ppb v/v			02/09/14 19:58	161
Vinyl acetate	ND		130	23	ppb v/v			02/09/14 19:58	161
Vinyl chloride	ND		64		ppb v/v			02/09/14 19:58	161
m,p-Xylene	530		130	16	ppb v/v			02/09/14 19:58	161
o-Xylene	150		64	8.7	ppb v/v			02/09/14 19:58	161
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130			-		02/09/14 19:58	161
1,2-Dichloroethane-d4 (Surr)	99		70 - 130					02/09/14 19:58	161
Toluene-d8 (Surr)	110		70 - 130					02/09/14 19:58	161

Client Sample ID: 095153-001/CWL-D3-350

Lab Sample ID: 320-5780-25 Date Collected: 01/16/14 11:46 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Orga	nic Compounds i	n Ambient Ai	r						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	1100	J	1600	58	ppb v/v			02/09/14 20:47	324
Benzene	ND		130	26	ppb v/v			02/09/14 20:47	324
Benzyl chloride	ND		260	53	ppb v/v			02/09/14 20:47	324
Bromodichloromethane	ND		97	21	ppb v/v			02/09/14 20:47	324
Bromoform	ND		130	23	ppb v/v			02/09/14 20:47	324

TestAmerica Sacramento

Client: Sandia National Laboratories

Project/Site: CWL

Client Sample ID: 095153-001/CWL-D3-350 Lab Sample ID: 320-5780-25

Date Collected: 01/16/14 11:46 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloromethane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichloro-1,1,2,2-tetrafluoroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane	ND 85 ND ND ND ND ND ND ND ND ND ND ND ND ND	J	260 260 260 260 97 260 97 260 130 260 130 130	64 25 21 21 100 31 64 26 24	ppb v/v ppb v/v ppb v/v ppb v/v ppb v/v ppb v/v ppb v/v ppb v/v ppb v/v ppb v/v ppb v/v ppb v/v		02/09/14 20:47 02/09/14 20:47 02/09/14 20:47 02/09/14 20:47 02/09/14 20:47 02/09/14 20:47 02/09/14 20:47 02/09/14 20:47 02/09/14 20:47 02/09/14 20:47	32- 32- 32- 32-
Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichloro-1,1,2,2-tetrafluoroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane	ND ND ND 140 ND ND ND ND ND ND ND ND ND ND ND ND ND	J	260 260 97 260 97 260 130 260 130	25 21 21 100 31 64 26 24 50	ppb v/v ppb v/v ppb v/v ppb v/v ppb v/v ppb v/v ppb v/v ppb v/v		02/09/14 20:47 02/09/14 20:47 02/09/14 20:47 02/09/14 20:47 02/09/14 20:47 02/09/14 20:47	32 32 32 32 32 32 32
Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichloro-1,1,2,2-tetrafluoroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane	ND ND 140 ND ND ND ND ND ND ND ND ND ND ND ND ND		260 97 260 97 260 130 260 130	21 100 31 64 26 24	ppb v/v ppb v/v ppb v/v ppb v/v ppb v/v ppb v/v ppb v/v		02/09/14 20:47 02/09/14 20:47 02/09/14 20:47 02/09/14 20:47 02/09/14 20:47 02/09/14 20:47	32 32 32 32 32 32
Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichloro-1,1,2,2-tetrafluoroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane	ND ND 140 ND ND ND ND ND ND ND ND ND ND ND ND ND		97 260 97 260 130 260 130	21 100 31 64 26 24 50	ppb v/v ppb v/v ppb v/v ppb v/v ppb v/v ppb v/v		02/09/14 20:47 02/09/14 20:47 02/09/14 20:47 02/09/14 20:47 02/09/14 20:47	32 32 32 32 32
Chloroethane Chloroform Chloromethane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichloro-1,1,2,2-tetrafluoroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane	ND 140 ND ND ND ND ND ND ND ND ND ND ND ND ND		260 97 260 130 260 130 130	100 31 64 26 24 50	ppb v/v ppb v/v ppb v/v ppb v/v		02/09/14 20:47 02/09/14 20:47 02/09/14 20:47 02/09/14 20:47	32
Chloroform Chloromethane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichloro-1,1,2,2-tetrafluoroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane	140 ND ND ND ND ND ND		97 260 130 260 130 130	31 64 26 24 50	ppb v/v ppb v/v ppb v/v ppb v/v		02/09/14 20:47 02/09/14 20:47 02/09/14 20:47	324 324
Chloromethane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichloro-1,1,2,2-tetrafluoroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane	ND ND ND ND ND ND		260 130 260 130 130	64 26 24 50	ppb v/v ppb v/v ppb v/v		02/09/14 20:47 02/09/14 20:47	324 324
Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichloro-1,1,2,2-tetrafluoroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane	ND ND ND ND ND ND		130 260 130 130	26 24 50	ppb v/v ppb v/v		02/09/14 20:47	
1,2-Dibromoethane (EDB) 1,2-Dichloro-1,1,2,2-tetrafluoroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane	ND ND ND ND ND		260 130 130	24 50	ppb v/v			324 324
1,2-Dichloro-1,1,2,2-tetrafluoroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane	ND ND ND ND		130 130	50			02/00/14 20-47	20.
1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane	ND ND ND ND		130		ppb v/v		UZ/UZ/ 14 ZU.4/	32
1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane	ND ND ND			40	property of the second		02/09/14 20:47	324
1,4-Dichlorobenzene Dichlorodifluoromethane	ND ND		120	42	ppb v/v		02/09/14 20:47	324
1,4-Dichlorobenzene Dichlorodifluoromethane	ND		130		ppb v/v		02/09/14 20:47	324
Dichlorodifluoromethane	ND		130		ppb v/v		02/09/14 20:47	324
			130		ppb v/v		02/09/14 20:47	324
1,1-Dichloroethane	ND		97		ppb v/v		02/09/14 20:47	324
1,2-Dichloroethane	52		260		ppb v/v		02/09/14 20:47	324
1,1-Dichloroethene	270		260		ppb v/v		02/09/14 20:47	324
cis-1,2-Dichloroethene	ND		130		ppb v/v		02/09/14 20:47	324
trans-1,2-Dichloroethene	ND		130		ppb v/v		02/09/14 20:47	324
1,2-Dichloropropane		J	130		ppb v/v		02/09/14 20:47	32
cis-1,3-Dichloropropene	ND.	•	130		ppb v/v		02/09/14 20:47	32
trans-1,3-Dichloropropene	ND		130		ppb v/v		02/09/14 20:47	32
Ethylbenzene		J	130		ppb v/v		02/09/14 20:47	324
4-Ethyltoluene	ND.	•	130		ppb v/v		02/09/14 20:47	324
Hexachlorobutadiene	ND		650		ppb v/v		02/09/14 20:47	324
2-Hexanone	ND ND						02/09/14 20:47	32
	ND ND		130 130		ppb v/v		02/09/14 20:47	324
4-Methyl-2-pentanone (MIBK)					ppb v/v			32
Methylene Chloride	340		130		ppb v/v		02/09/14 20:47	324
Styrene	61 ND	J	130		ppb v/v		02/09/14 20:47	
1,1,2,2-Tetrachloroethane	ND		130		ppb v/v		02/09/14 20:47	324
Tetrachloroethene	97	J	130		ppb v/v		02/09/14 20:47	324
Toluene	1100		130		ppb v/v		02/09/14 20:47	32
1,1,2-Trichloro-1,2,2-trifluoroetha	840		130	53	ppb v/v		02/09/14 20:47	324
ne 1,2,4-Trichlorobenzene	ND		650	140	ppb v/v		02/09/14 20:47	324
1,1,1-Trichloroethane	ND		97		ppb v/v		02/09/14 20:47	324
	ND		130		ppb v/v ppb v/v		02/09/14 20:47	324
1,1,2-Trichloroethane								
Trichland for any set to a se	5300		130		ppb v/v		02/09/14 20:47	324
Trichlorofluoromethane	210 ND		130		ppb v/v		02/09/14 20:47	32
1,2,4-Trimethylbenzene	ND		260		ppb v/v		02/09/14 20:47	32
1,3,5-Trimethylbenzene	ND		130		ppb v/v		02/09/14 20:47	32
Vinyl acetate	ND		260		ppb v/v		02/09/14 20:47	324
Vinyl chloride	ND		130	39	ppb v/v		02/09/14 20:47	32
m,p-Xylene	340		260		ppb v/v		02/09/14 20:47	32
o-Xylene	98	J	130	17	ppb v/v		02/09/14 20:47	324
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa

TestAmerica Sacramento

Client: Sandia National Laboratories

Project/Site: CWL

Client Sample ID: 095153-001/CWL-D3-350 Lab Sample ID: 320-5780-25

Date Collected: 01/16/14 11:46 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		70 - 130	_		02/09/14 20:47	324
Toluene-d8 (Surr)	108		70 - 130			02/09/14 20:47	324

Client Sample ID: 095154-001/CWL-D3-440

Lab Sample ID: 320-5780-26 Date Collected: 01/16/14 12:00 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	1400	J	1600	58	ppb v/v			02/09/14 21:37	32
Benzene	ND		130	26	ppb v/v			02/09/14 21:37	32
Benzyl chloride	ND		260	53	ppb v/v			02/09/14 21:37	32
Bromodichloromethane	ND		98	22	ppb v/v			02/09/14 21:37	32
Bromoform	ND		130	23	ppb v/v			02/09/14 21:37	32
Bromomethane	ND		260	110	ppb v/v			02/09/14 21:37	32
2-Butanone (MEK)	100	J	260	65	ppb v/v			02/09/14 21:37	32
Carbon disulfide	ND		260	26	ppb v/v			02/09/14 21:37	32
Carbon tetrachloride	30	J	260	21	ppb v/v			02/09/14 21:37	32
Chlorobenzene	ND		98	21	ppb v/v			02/09/14 21:37	32
Chloroethane	ND		260	100	ppb v/v			02/09/14 21:37	32
Chloroform	230		98	31	ppb v/v			02/09/14 21:37	32
Chloromethane	ND		260	65	ppb v/v			02/09/14 21:37	32
Dibromochloromethane	ND		130	26	ppb v/v			02/09/14 21:37	32
1,2-Dibromoethane (EDB)	ND		260	25	ppb v/v			02/09/14 21:37	32
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		130	51	ppb v/v			02/09/14 21:37	32
1,2-Dichlorobenzene	ND		130	43	ppb v/v			02/09/14 21:37	32
1,3-Dichlorobenzene	ND		130	36	ppb v/v			02/09/14 21:37	32
1,4-Dichlorobenzene	ND		130	49	ppb v/v			02/09/14 21:37	32
Dichlorodifluoromethane	ND		130	48	ppb v/v			02/09/14 21:37	32
1,1-Dichloroethane	ND		98	24	ppb v/v			02/09/14 21:37	32
1,2-Dichloroethane	97	J	260	29	ppb v/v			02/09/14 21:37	32
1,1-Dichloroethene	400		260	42	ppb v/v			02/09/14 21:37	32
cis-1,2-Dichloroethene	ND		130	29	ppb v/v			02/09/14 21:37	32
trans-1,2-Dichloroethene	ND		130	33	ppb v/v			02/09/14 21:37	32
1,2-Dichloropropane	190		130	79	ppb v/v			02/09/14 21:37	32
cis-1,3-Dichloropropene	ND		130	34	ppb v/v			02/09/14 21:37	32
trans-1,3-Dichloropropene	ND		130	29	ppb v/v			02/09/14 21:37	32
Ethylbenzene	97	J	130	21	ppb v/v			02/09/14 21:37	32
4-Ethyltoluene	ND		130	61	ppb v/v			02/09/14 21:37	32
Hexachlorobutadiene	ND		660	140	ppb v/v			02/09/14 21:37	32
2-Hexanone	ND		130	29	ppb v/v			02/09/14 21:37	32
4-Methyl-2-pentanone (MIBK)	ND		130	44	ppb v/v			02/09/14 21:37	32
Methylene Chloride	330		130	24	ppb v/v			02/09/14 21:37	32
Styrene	ND		130	19	ppb v/v			02/09/14 21:37	32
1,1,2,2-Tetrachloroethane	ND		130	23	ppb v/v			02/09/14 21:37	32
Tetrachloroethene	150		130		ppb v/v			02/09/14 21:37	32
Toluene	570		130		ppb v/v			02/09/14 21:37	32

TestAmerica Sacramento

Client: Sandia National Laboratories

Project/Site: CWL

Client Sample ID: 095154-001/CWL-D3-440 Lab Sample ID: 320-5780-26

Date Collected: 01/16/14 12:00 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloro-1,2,2-trifluoroetha	1300		130	53	ppb v/v			02/09/14 21:37	328
ne									
1,2,4-Trichlorobenzene	ND		660	140	ppb v/v			02/09/14 21:37	328
1,1,1-Trichloroethane	ND		98	21	ppb v/v			02/09/14 21:37	328
1,1,2-Trichloroethane	ND		130	22	ppb v/v			02/09/14 21:37	328
Trichloroethene	8200		130	34	ppb v/v			02/09/14 21:37	328
Trichlorofluoromethane	310		130	64	ppb v/v			02/09/14 21:37	328
1,2,4-Trimethylbenzene	ND		260	53	ppb v/v			02/09/14 21:37	328
1,3,5-Trimethylbenzene	ND		130	41	ppb v/v			02/09/14 21:37	328
Vinyl acetate	ND		260	48	ppb v/v			02/09/14 21:37	328
Vinyl chloride	ND		130	39	ppb v/v			02/09/14 21:37	328
m,p-Xylene	460		260	33	ppb v/v			02/09/14 21:37	328
o-Xylene	140		130	18	ppb v/v			02/09/14 21:37	328
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130			=		02/09/14 21:37	328
1,2-Dichloroethane-d4 (Surr)	98		70 - 130					02/09/14 21:37	328
Toluene-d8 (Surr)	106		70 - 130					02/09/14 21:37	328

Client Sample ID: 095155-001/CWL-D3-480

Date Collected: 01/16/14 11:51 Date Received: 01/22/14 09:15

O-marks O-matrix and O-matrix

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	7.4		5.0	0.18	ppb v/v			02/09/14 22:32	1
Benzene	0.15	J	0.40	0.079	ppb v/v			02/09/14 22:32	1
Benzyl chloride	ND		0.80	0.16	ppb v/v			02/09/14 22:32	1
Bromodichloromethane	ND		0.30	0.066	ppb v/v			02/09/14 22:32	1
Bromoform	ND		0.40	0.070	ppb v/v			02/09/14 22:32	1
Bromomethane	ND		0.80	0.34	ppb v/v			02/09/14 22:32	1
2-Butanone (MEK)	1.6		0.80	0.20	ppb v/v			02/09/14 22:32	1
Carbon disulfide	ND		0.80	0.078	ppb v/v			02/09/14 22:32	1
Carbon tetrachloride	0.18	J	0.80	0.064	ppb v/v			02/09/14 22:32	1
Chlorobenzene	ND		0.30	0.064	ppb v/v			02/09/14 22:32	1
Chloroethane	ND		0.80	0.31	ppb v/v			02/09/14 22:32	1
Chloroform	1.4		0.30	0.095	ppb v/v			02/09/14 22:32	1
Chloromethane	ND		0.80	0.20	ppb v/v			02/09/14 22:32	1
Dibromochloromethane	ND		0.40	0.079	ppb v/v			02/09/14 22:32	1
1,2-Dibromoethane (EDB)	ND		0.80	0.075	ppb v/v			02/09/14 22:32	1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.40	0.16	ppb v/v			02/09/14 22:32	1
1,2-Dichlorobenzene	ND		0.40	0.13	ppb v/v			02/09/14 22:32	1
1,3-Dichlorobenzene	ND		0.40	0.11	ppb v/v			02/09/14 22:32	1
1,4-Dichlorobenzene	ND		0.40	0.15	ppb v/v			02/09/14 22:32	1
Dichlorodifluoromethane	0.57		0.40	0.15	ppb v/v			02/09/14 22:32	1
1,1-Dichloroethane	ND		0.30	0.072	ppb v/v			02/09/14 22:32	1
1,2-Dichloroethane	0.13	J	0.80	0.088	ppb v/v			02/09/14 22:32	1
1,1-Dichloroethene	1.5		0.80	0.13	ppb v/v			02/09/14 22:32	1

TestAmerica Sacramento

TestAmerica Job ID: 320-5780-1

Lab Sample ID: 320-5780-27

Matrix: Air

Client: Sandia National Laboratories TestAmerica Job ID: 320-5780-1

Project/Site: CWL

Client Sample ID: 095155-001/CWL-D3-480

Date Collected: 01/16/14 11:51 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND		0.40	0.089	ppb v/v			02/09/14 22:32	1
trans-1,2-Dichloroethene	ND		0.40	0.10	ppb v/v			02/09/14 22:32	1
1,2-Dichloropropane	0.68		0.40	0.24	ppb v/v			02/09/14 22:32	1
cis-1,3-Dichloropropene	ND		0.40	0.10	ppb v/v			02/09/14 22:32	1
trans-1,3-Dichloropropene	ND		0.40	0.088	ppb v/v			02/09/14 22:32	1
Ethylbenzene	ND		0.40	0.063	ppb v/v			02/09/14 22:32	1
4-Ethyltoluene	ND		0.40	0.19	ppb v/v			02/09/14 22:32	1
Hexachlorobutadiene	ND		2.0	0.43	ppb v/v			02/09/14 22:32	1
2-Hexanone	0.20	J	0.40	0.087	ppb v/v			02/09/14 22:32	1
4-Methyl-2-pentanone (MIBK)	ND		0.40	0.14	ppb v/v			02/09/14 22:32	1
Methylene Chloride	1.3		0.40	0.072	ppb v/v			02/09/14 22:32	1
Styrene	ND		0.40	0.059	ppb v/v			02/09/14 22:32	1
1,1,2,2-Tetrachloroethane	ND		0.40	0.069	ppb v/v			02/09/14 22:32	1
Tetrachloroethene	0.90		0.40	0.051	ppb v/v			02/09/14 22:32	1
Toluene	0.18	J	0.40	0.051	ppb v/v			02/09/14 22:32	1
1,1,2-Trichloro-1,2,2-trifluoroetha	4.2		0.40	0.16	ppb v/v			02/09/14 22:32	1
ne									
1,2,4-Trichlorobenzene	ND		2.0		ppb v/v			02/09/14 22:32	1
1,1,1-Trichloroethane	0.12	J	0.30	0.065	ppb v/v			02/09/14 22:32	1
1,1,2-Trichloroethane	ND		0.40	0.067	ppb v/v			02/09/14 22:32	1
Trichloroethene	35		0.40	0.11	ppb v/v			02/09/14 22:32	1
Trichlorofluoromethane	1.3		0.40	0.20	ppb v/v			02/09/14 22:32	1
1,2,4-Trimethylbenzene	ND		0.80	0.16	ppb v/v			02/09/14 22:32	1
1,3,5-Trimethylbenzene	ND		0.40	0.13	ppb v/v			02/09/14 22:32	1
Vinyl acetate	ND		0.80	0.15	ppb v/v			02/09/14 22:32	1
Vinyl chloride	ND		0.40	0.12	ppb v/v			02/09/14 22:32	1
m,p-Xylene	ND		0.80	0.10	ppb v/v			02/09/14 22:32	1
o-Xylene	ND		0.40	0.054	ppb v/v			02/09/14 22:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130			-		02/09/14 22:32	1
1,2-Dichloroethane-d4 (Surr)	98		70 - 130					02/09/14 22:32	1
Toluene-d8 (Surr)	105		70 - 130					02/09/14 22:32	1

Client Sample ID: 095156-001/CWL-D3-FB1

Date Collected: 01/16/14 11:32

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Lab Sample ID: 320-5780-28

Lab Sample ID: 320-5780-27

Matrix: Air

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.96	J	5.0	0.18	ppb v/v			02/09/14 23:26	1
Benzene	ND		0.40	0.079	ppb v/v			02/09/14 23:26	1
Benzyl chloride	ND		0.80	0.16	ppb v/v			02/09/14 23:26	1
Bromodichloromethane	ND		0.30	0.066	ppb v/v			02/09/14 23:26	1
Bromoform	ND		0.40	0.070	ppb v/v			02/09/14 23:26	1
Bromomethane	ND		0.80	0.34	ppb v/v			02/09/14 23:26	1
2-Butanone (MEK)	ND		0.80	0.20	ppb v/v			02/09/14 23:26	1
Carbon disulfide	ND		0.80	0.078	ppb v/v			02/09/14 23:26	1

TestAmerica Sacramento

Client: Sandia National Laboratories

Project/Site: CWL

Client Sample ID: 095156-001/CWL-D3-FB1 Lab Sample ID: 320-5780-28

Date Collected: 01/16/14 11:32 Matrix: Air

Date Received: 01/22/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Carbon tetrachloride	ND		0.80	0.064	ppb v/v			02/09/14 23:26	
Chlorobenzene	ND		0.30	0.064	ppb v/v			02/09/14 23:26	
Chloroethane	ND		0.80	0.31	ppb v/v			02/09/14 23:26	
Chloroform	ND		0.30	0.095	ppb v/v			02/09/14 23:26	
Chloromethane	ND		0.80	0.20	ppb v/v			02/09/14 23:26	
Dibromochloromethane	ND		0.40	0.079	ppb v/v			02/09/14 23:26	
1,2-Dibromoethane (EDB)	ND		0.80	0.075	ppb v/v			02/09/14 23:26	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.40	0.16	ppb v/v			02/09/14 23:26	
1,2-Dichlorobenzene	ND		0.40	0.13	ppb v/v			02/09/14 23:26	
1,3-Dichlorobenzene	ND		0.40	0.11	ppb v/v			02/09/14 23:26	
1,4-Dichlorobenzene	ND		0.40	0.15	ppb v/v			02/09/14 23:26	
Dichlorodifluoromethane	0.18	J	0.40	0.15	ppb v/v			02/09/14 23:26	
1,1-Dichloroethane	ND		0.30	0.072	ppb v/v			02/09/14 23:26	
1,2-Dichloroethane	ND		0.80	0.088	ppb v/v			02/09/14 23:26	
1,1-Dichloroethene	ND		0.80	0.13	ppb v/v			02/09/14 23:26	
cis-1,2-Dichloroethene	ND		0.40	0.089	ppb v/v			02/09/14 23:26	
trans-1,2-Dichloroethene	ND		0.40	0.10	ppb v/v			02/09/14 23:26	
1,2-Dichloropropane	ND		0.40	0.24	ppb v/v			02/09/14 23:26	
cis-1,3-Dichloropropene	ND		0.40	0.10	ppb v/v			02/09/14 23:26	
trans-1,3-Dichloropropene	ND		0.40	0.088	ppb v/v			02/09/14 23:26	
Ethylbenzene	ND		0.40		ppb v/v			02/09/14 23:26	
4-Ethyltoluene	ND		0.40		ppb v/v			02/09/14 23:26	
Hexachlorobutadiene	ND		2.0	0.43	ppb v/v			02/09/14 23:26	
2-Hexanone	ND		0.40	0.087	ppb v/v			02/09/14 23:26	
4-Methyl-2-pentanone (MIBK)	ND		0.40		ppb v/v			02/09/14 23:26	
Methylene Chloride	ND		0.40	0.072	ppb v/v			02/09/14 23:26	
Styrene	ND		0.40		ppb v/v			02/09/14 23:26	
1,1,2,2-Tetrachloroethane	ND		0.40		ppb v/v			02/09/14 23:26	
Tetrachloroethene	ND		0.40	0.051	ppb v/v			02/09/14 23:26	
Toluene	ND		0.40	0.051	ppb v/v			02/09/14 23:26	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.40	0.16	ppb v/v			02/09/14 23:26	
1,2,4-Trichlorobenzene	ND		2.0	0.43	ppb v/v			02/09/14 23:26	
1,1,1-Trichloroethane	ND		0.30	0.065	ppb v/v			02/09/14 23:26	
1,1,2-Trichloroethane	ND		0.40	0.067	ppb v/v			02/09/14 23:26	
Trichloroethene	ND		0.40	0.11	ppb v/v			02/09/14 23:26	
Trichlorofluoromethane	ND		0.40		ppb v/v			02/09/14 23:26	
1,2,4-Trimethylbenzene	ND		0.80	0.16	ppb v/v			02/09/14 23:26	
1,3,5-Trimethylbenzene	ND		0.40	0.13	ppb v/v			02/09/14 23:26	
Vinyl acetate	ND		0.80		ppb v/v			02/09/14 23:26	
Vinyl chloride	ND		0.40	0.12	ppb v/v			02/09/14 23:26	
m,p-Xylene	ND		0.80	0.10	ppb v/v			02/09/14 23:26	
o-Xylene	ND		0.40	0.054	ppb v/v			02/09/14 23:26	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	100		70 - 130			-		02/09/14 23:26	
1,2-Dichloroethane-d4 (Surr)	97		70 - 130					02/09/14 23:26	
Toluene-d8 (Surr)	101		70 - 130					02/09/14 23:26	

ANNEX C
Chemical Waste Landfill
CY 2014 Post-Closure Inspection Forms

1.	Date of Inspection _	3/3/14	
2.	Time of Inspection	1335	
3.	Name of Inspector _	Robert	tibek

Mandatory requirement:

The inspector has read the CWL Post-Closure Care Permit and activity-related procedures in the last 12 months, and completed all required training. (Inspector must initial box before proceeding with the inspection.)

Thy

Training records maintained at CAMU Administrative Trailer.

Provide explanatory notes for each parameter not inspected or each action required. Include any remedial steps required.

Ins	spection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Α.	Visible settlement of the soil cover in excess of 6 inches.	yes	No	
B.	Erosion of the soil cover in excess of 6 inches deep.	405	No	
C.	Evidence of water ponding on the CWL cover surface in excess of 100 square feet.	405	No	
D.	Animal intrusion burrows in excess of 4 inches in diameter. Note: For first 3 to 5 years this inspection requirement may be covered on the Cover Biology Checklist.	yes	No	
E.	Contiguous areas of no vegetation greater than 200 ft ² . Note: For first 3 to 5 years this inspection requirement may be covered on the Cover Biology Checklist.	yes	No .	

Inspection Parameters	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Channel or sidewall erosion in excess of 6 inches deep.	725	No	
B. Channel sediment accumulation in excess of 6 inches deep.	yes	16	×
C. Debris that blocks more than 1/3 of the channel width.	75	4ES	1

Inspection Parameters	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Accumulation of wind-blown plants and debris.	yes	705	2
B. Fence wires and posts in need of repair/maintenance.	45	16	
C. Gates in need of oiling/repair/maintenance.	yes	16	
D. Locks in need of cleaning or replacement.	yes	16	
E. Warning signs in need of repair or replacement.	yes	No	
F. Survey monuments in vicinity of CWL visible.	205	16	·

Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.			

NOTES

	110125
Note Number	Description
1.	Wind blown tumble weeds need to be
	removed from all drainage culverts
	on the south side of the site
2.	wind blown tumble weeds need to be removed from the site Sence.
	removed from the site Sence.
	"

Don Schotiel	d,
Action (Note Number) / assigned to Mike Mike	Date action completed 4/9/14
Action (Note Number) 2. assigned to My Mathell	Date action completed 4/9/14
Action (Note Number) assigned to	_Date action completed
Action (Note Number) assigned to	_Date action completed
Action (Note Number) assigned to	_Date action completed
Additional Comments:	
Action note numbers 142	were completed
by Segnia Landscaping	
Dates that work was pe	
were April 7, 8, 89,	
я ±	
	e
·	
*	
*	
Whit na 7	

Inspector's Signature

Original to: Chemical Waste Landfill Operating Record

Copy to: Environmental Safety and Health (ES&H) and Security Records Center

PERMIT ATTACHMENT 4 Page 106 of 125

1.	Date of Inspection	6/17/14
2.	Time of Inspection	0900-0959
3.	Name of Inspector	Robert Book

Mandatory requirement:

The inspector has read the CWL Post-Closure Care Permit and activity-related procedures in the last 12 months, and completed all required training: (Inspector must initial box before proceeding with the inspection.)

1/2

Training records maintained at CAMU Administrative Trailer.

Provide explanatory notes for each parameter not inspected or each action required. Include any remedial steps required.

ī.	COVER SYSTEM [Quarterly]			•		
Ins	Inspection Parameter		tion Parameter Inspecte (Yes or N		Action Required (Yes or No)	Note Number
Α.	Visible settlement of the soil cover in excess of 6 inches.	Jes.	No			
В.	Erosion of the soil cover in excess of 6 inches deep.	bes	No			
C.	Evidence of water ponding on the CWL cover surface in excess of 100 square feet.	725	No			
D.	Animal intrusion burrows in excess of 4 inches in diameter. Note: For first 3 to 5 years this inspection requirement may be covered on the Cover Biology Checklist.	yes	16			
E.	Contiguous areas of no vegetation greater than 200 ft ² . Note: For first 3 to 5 years this inspection requirement may be covered on the Cover Biology Checklist.	ye's	No			

II. SURFACE-WATER (STORM-WATER) DIVERSION Inspection Parameters	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Channel or sidewall erosion in excess of 6 inches deep.	yes	No	
B. Channel sediment accumulation in excess of 6 inches deep.	yes	No	
C. Debris that blocks more than 1/3 of the channel width.	yes	No	

III. SECURITY FENCE [Quarterly]			
Inspection Parameters	Parameter Inspected (Yes or No)	Action Required (Yes or No)	· Note Number
A. Accumulation of wind-blown plants and debris.	405	No	
B. Fence wires and posts in need of repair/maintenance.	bes	No	
C. Gates in need of oiling/repair/maintenance.	yes	No	
D. Locks in need of cleaning or replacement.	'yes	16	
E. Warning signs in need of repair or replacement.	yes	No	
F. Survey monuments in vicinity of CWL visible.	yes	yes	/

IV. PREVIOUS DEFICIENCIES	, .		
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.	NA	NA	

Sandia National Laboratories
Post-Closure Care Permit
NM5890110518

Chemical Waste Landfill Post-Closure Inspection Form Checklist for Cover System / Surface-Water / Security Fence (continued)

NOTES

Note					
Number	Description				
	Western most benchmark not visible. Covered with dirt.				
•	•				
	,				
	·				

	11	メラル	1. de
Action (Note Number)/	_assigned to _Kobe	1 ZinkDate action completed 6	117/14
Action (Note Number)	_assigned to	Date action completed	
Action (Note Number)	assigned to	Date action completed	
Action (Note Number)	assigned to	Date action completed	
Action (Note Number)	assigned to	Date action completed	
Additional Comments:			,
Action note	#1 was a	ompleted at time	of the
inspection		empketed at time	,
		····	
,			
`			
		•	
	AA.		•

Inspector's Signature

Original to: Chemical Waste Landfill Operating Record

Copy to: Environmental Safety and Health (ES&H) and Security Records Center

l.	Date of Inspection _	9/10/14
2.	Time of Inspection	0915-0950
		Robert Zock

Mandatory requirement:

The inspector has read the CWL Post-Closure Care Permit and activity-related procedures in the last 12 months, and completed all required training: (Inspector must initial box before proceeding with the inspection.)

aining: 1

Training records maintained at CAMU Administrative Trailer.

Provide explanatory notes for each parameter not inspected or each action required. Include any remedial steps required.

Ins	pection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A.	Visible settlement of the soil cover in excess of 6 inches.	yes	No	
B.	Erosion of the soil cover in excess of 6 inches deep.	yes	No	
C.	Evidence of water ponding on the CWL cover surface in excess of 100 square feet.	yes	No	
D.	Animal intrusion burrows in excess of 4 inches in diameter. Note: For first 3 to 5 years this inspection requirement may be covered on the Cover Biology Checklist.	yes	No	
E.	Configuous areas of no vegetation greater than 200 ft ² . Note: For first 3 to 5 years this inspection requirement may be covered on the Cover Biology Checklist.	yes	No	

Inspection Parameters	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Channel or sidewall erosion in excess of 6 inches deep.	Yes	No	
B. Channel sediment accumulation in excess of 6 inches deep.	yes	No	
C. Debris that blocks more than 1/3 of the channel width.	yes	yes	1

Inspection Parameters	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Accumulation of wind-blown plants and debris.	yes	ye s	1
B. Fence wires and posts in need of repair/maintenance.	yes	No	
C. Gates in need of oiling/repair/maintenance.	yes	No	
D. Locks in need of cleaning or replacement.	yes	No	
E. Warning signs in need of repair or replacement.	yes	No	
F. Survey monuments in vicinity of CWL visible.	405	yes	2

IV. PREVIOUS DEFICIENCIES			
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.	NA	NA	

NOTES

Note Number	Description
	All drainage culverts on south side of site had accumulation of wind-blown plants
	*
2,	The 2 western most survey monuments were not clearly visible due to dirt and weeds.
	g e

Action (Note Number) / assigned to Robert Zock Date action completed 9/10/14
Action (Note Number) 2 assigned to Robert Bock Date action completed 9/10/14
Action (Note Number) assigned toDate action completed
Action (Note Number) assigned toDate action completed
Action (Note Number) assigned toDate action completed
Additional Comments:
1. Accumulated wind-blown plants were removed from
all drainage culverts on the south side of the six
at time of the inspection, by Robert Zibik
2. Weeds and dixt were removed from the two
western most survey monuments at time of
the inspection, by Robert Ziock

Inspector's Signature / Justill Operating Record

Copy to: Environmental Safety and Health (ES&H) and Security Records Center

PERMIT ATTACHMENT 4
Page 106 of 125

1.	Date of Inspection	12/9/14	
2.	Time of Inspection	1410	
3	Name of Inspector	1445	

Mandatory requirement:

The inspector has read the CWL Post-Closure Care Permit and activity-related procedures in the last 12 months, and completed all required training: (Inspector must initial box before proceeding with the inspection.)

Training records maintained at CAMU Administrative Trailer.

Provide explanatory notes for each parameter not inspected or each action required. Include any remedial steps required.

Inspection Parameter		Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A.	Visible settlement of the soil cover in excess of 6 inches.	yes	No	
B.	Erosion of the soil cover in excess of 6 inches deep.	yes	No	
C.	Evidence of water ponding on the CWL cover surface in excess of 100 square feet.	yes	No	
D.	Animal intrusion burrows in excess of 4 inches in diameter. Note: For first 3 to 5 years this inspection requirement may be covered on the Cover Biology Checklist.	yes	No	
E.	Contiguous areas of no vegetation greater than 200 ft ² . Note: For first 3 to 5 years this inspection requirement may be covered on the Cover Biology Checklist.	yes	No	

Inspection Parameters	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Channel or sidewall erosion in excess of 6 inches deep.	yes	No	
B. Channel sediment accumulation in excess of 6 inches deep.	yes	yes	1
C. Debris that blocks more than 1/3 of the channel width.	405	No	

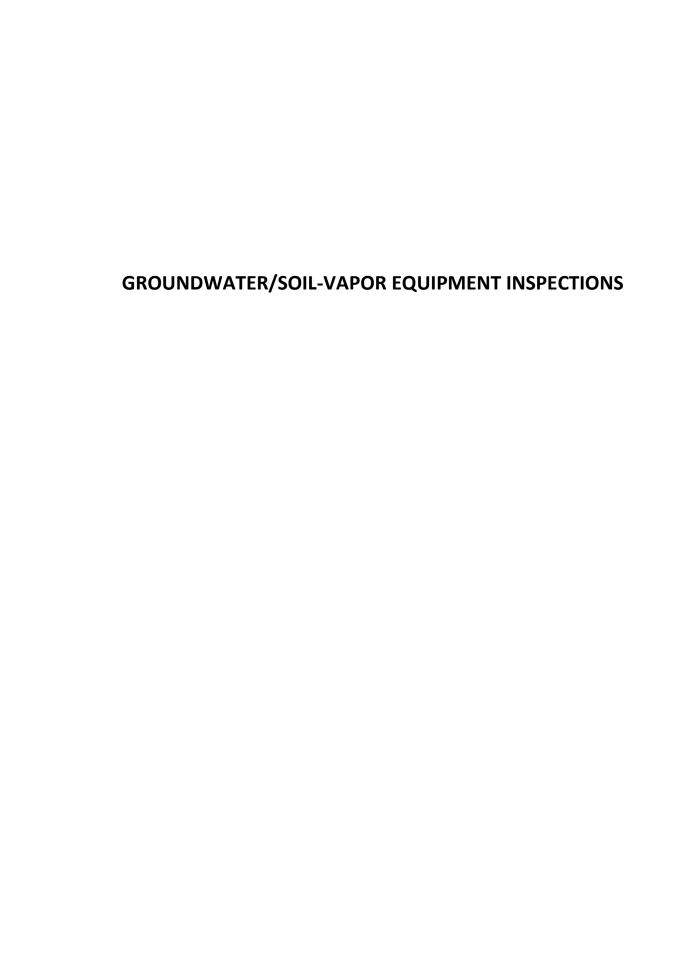
Inspection Parameters	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Accumulation of wind-blown plants and debris.	yes	yes	2
B. Fence wires and posts in need of repair/maintenance.	yes	No	
C. Gates in need of oiling/repair/maintenance.	yes	16	
D. Locks in need of cleaning or replacement.	yes	No	
E. Warning signs in need of repair or replacement.	yes	16	
F. Survey monuments in vicinity of CWL visible.	yes	16	

IV. PREVIOUS DEFICIENCIES			
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.	NA	MA	

NOTES

Note Number	Description
1	Culvert at the southwest corner of the site has sediment accumulation in excess of 6 inches deep on west side of road.
2	Accumulation of wind-blown plants along the fence surrounding the site,
	dis _e

Chemical Waste Landfill Post-Closure Inspection Form Checklist for Cover System / Surface-Water / Security Fence (continued)


Action (Note Number)/_ assigned to Robert 36th Date action completed 12/10/14
Action (Note Number) assigned to Robert Zbellate action completed_12/9/14
Action (Note Number) assigned toDate action completed
Action (Note Number) assigned toDate action completed
Action (Note Number) assigned toDate action completed
Additional Comments:
1. Robert Ziock used a shovel to remove excess
sediment accumulation from the culrect on the
south west side of the site.
2. Wind-blown plants were removed from the site
fence by Robert Bock as the inspection
was being conducted.

Inspector's Signature

Original to: Chemical Waste Landfill Operating Record

Copy to: Environmental Safety and Health (ES&H) and Security Records Center

PERMIT ATTACHMENT 4 Page 106 of 125

1.	Date of Inspection_	01-09-14
2.	Time of Inspection	0745
3.	Name of Inspector	Robert Lynch

Mandatory requirement:

The inspector has read the CWL Post-Closure Care Permit and activity-related procedures in the last 12 months, and completed all required training: (Inspector must initial box before proceeding with the inspection.)

RL

Training records maintained at CAMU Administrative Trailer.

Provide explanatory notes for each parameter not inspected or each action required. Include any remedial steps required.

Ins	pection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A.	Concrete pads, bollards, and protective easings in need of repair/maintenance.	YES	No	
В.	Well cover caps (e.g., PVC caps, J-Plug, or equivalent) in need of repair/maintenance.	YES	No	
C.	Well casing in need of repair/maintenance.	YES	NO	
D.	Monitoring well properly labeled.	YES	NO	
E.	Locks in need of cleaning or replacement.	YES	NO	

Inspection Parameters	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number	
A. Sampling pump in need of repair/maintenance.	YE5	NO		
B. Sampling assembly (e.g., tubing, gauges, and valves) in need of repair/maintenance.	YES	NO	 	

III. PREVIOUS DEFICIENCIES				
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number	
Uncorrected/undocumented previous deficiencies.	NA	NA		

NOTES

Note Number	Description
- Statement of Sta	Baroball assembly installed on all wells after
	Baroball assembly installed on all wells after discussion with NMED personnel on March 5,2012.
	CWL-BW5, CWL-MW9, CWL-MW10, CWL-MW11
_	

Action (Note Number)	assigned to	Date action completed
Action (Note Number)	assigned to	Date action completed
Action (Note Number)	assigned to	_Date action completed
Action (Note Number)	assigned to	Date action completed
Action (Note Number)	assigned to	Date action completed
Additional Comments:		
	-	

Inspector's Signature

Original to: Chemical Waste Landfill Operating Record

Copy to: Environmental Safety and Health (ES&H) and Security Records Center

Chemical Waste Landfill Post-Closure Inspection Form Checklist for Soil-Gas Monitoring Locations / Sampling Equipment

1.	Date of Inspection 1/16/14
2.	Time of Inspection 0900
3.	Name of Inspector Robert Lynch

Mandatory requirement:

The inspector has read the CWL Post-Closure Care Permit and activity-related procedures in the last 12 months, and completed all required training: (Inspector must initial box before proceeding with the inspection.)

RL

Training records maintained at CAMU Administrative Trailer.

Provide explanatory notes for each parameter not inspected or each action required. Include any remedial steps required.

L	L SOIL-GAS MONITORING LOCATIONS [Annually]					
Ins	spection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number		
A	Concrete pads, bollards, and protective casings in need of repair/maintenance.	YES	No			
В.	Well cover caps (e.g., PVC caps, J-Plug, Swagelok® dust caps, passive venting Baroballs™, or equivalent) in need of repair/maintenance.	YES	NO			
C.	Well casing or sampling ports in need of repair/maintenance.	YES	2			
D.	Monitoring location and sampling ports properly labeled.	YES.	NO			
E.	Locks in need of cleaning or replacement.	VO XESTUL	y NA	1		

II. SAMPLING EQUIPMENT [Annually]					
Inspection Parameters	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number		
A. Sampling pump in need of repair/maintenance.	YES	NO			
B. Sampling assembly (e.g., tubing, gauges, and valves) in need of repair/maintenance.	YES	No			

IIL PREVIOUS DEFICIENCIES				
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number	
Uncorrected/undocumented previous deficiencies.	NA	NA		

NOTES

Note Number	_			r	escription		
1	ρJυ	jocks		Vapou	well	Design	
		•					
		Tim Marking State of the Assessment Assessment of the State of the Sta	***************************************	A11-A11-A11-A11-A11-A11-A11-A11-A11-A11		AAAAAAAAAAAAAAAAAAAAAA	
				-			
**************************************		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			WAY O		
direction of the control of the cont							

1.	Date of Inspection	07/07/14
	Time of Inspection	• / • /
3.	Name of Inspector_	RoberTLynch

Mandatory requirement:

The inspector has read the CWL Post-Closure Care Permit and activity-related procedures in the last 12 months, and completed all required training: (Inspector must initial box before proceeding with the inspection.)

RL

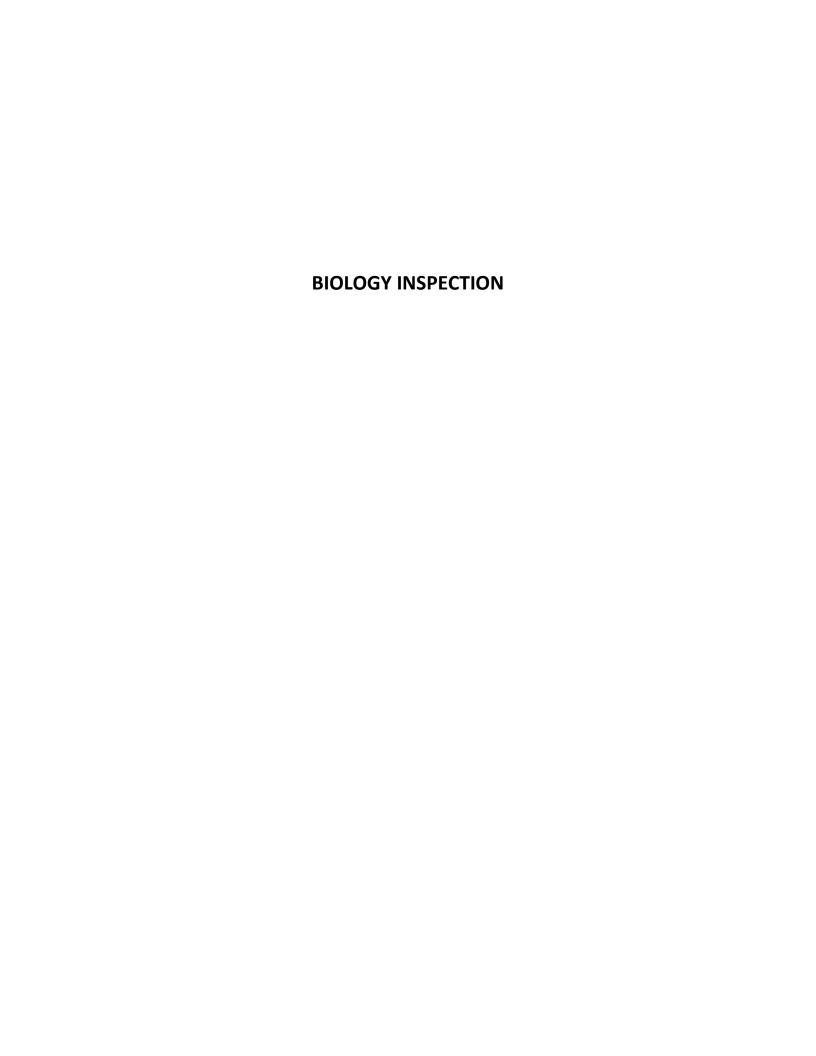
Training records maintained at CAMU Administrative Trailer.

Provide explanatory notes for each parameter not inspected or each action required. Include any remedial steps required.

I. GROUNDWATER MONITORING LOCATIONS [Semi-annually]									
Ins	pection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number					
Α.	Concrete pads, bollards, and protective casings in need of repair/maintenance.	Yes	No						
В.	Well cover caps (e.g., PVC caps, J-Plug, or equivalent) in need of repair/maintenance.	YES	NO	Î					
C.	Well casing in need of repair/maintenance.	YES	NO						
D.	Monitoring well properly labeled.	YES	NO						
E.	Locks in need of cleaning or replacement.	YES	No						

II. GROUNDWATER SAMPLING EQUIPMENT [Semi-annually]								
Inspection Parameters	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number					
A. Sampling pump in need of repair/maintenance.	YES	Nσ						
B. Sampling assembly (e.g., tubing, gauges, and valves) in need of repair/maintenance.	YES	No						

III. PREVIOUS DEFICIENCIES								
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number					
Uncorrected/undocumented previous deficiencies.	NA	NA						


NOTES

Note Number	Description
1	Baroball assembly installed on all wells
	after discussion with NMED personnel on
	March 5,2012.
	CWL-BWS, CWL-MW9, CWL-MW10, CWL-MWII
	•
	_

Action (Note Number)	assigned to	Date action completed
Action (Note Number)	assigned to	Date action completed
Action (Note Number)	assigned to	Date action completed
Action (Note Number)	assigned to	Date action completed
Action (Note Number)	assigned to	Date action completed
Additional Comments:		
	,	-
		
	14 1	

Inspector's Signature // Affice
Original to: Chemical Waste Landill Operating Record

Copy to: Environmental Safety and Health (ES&H) and Security Records Center

Chemical Waste Landfill Post-Closure Inspection Form Biology Inspection Checklist for the CWL Cover

Mandatory requirement:

The inspector has read the CWL Post-Closure Care Permit and activity-related procedures in the last 12 months, and completed all required training: (Inspector must initial box before proceeding with the inspection.)

Approximate vegetative coverage (i.e., living plants): 44 %

Approximate percent native vegetation of the total vegetative cover: 98 %

Listed below are the main plant species identified growing on the CWL cover and the approximate percent cover for each species.

		%Total cover
Scientific Name	Common Name (optional)	photosynthesizing
Boutelouz gracilis	Blue grama	15%
Bouteloua barbata	Six-weeks grama	1%
Salsola tragus	Russian thistle	trace*
Pleuraphis jamesii	Galleta grass	2%
Sporobolus cryptandrus	Sand dropseed	21%
Kallstroemia parviflora	Warty caltrop	<u>trace</u>
Panicum capillare	Witchgrass	<u>trace</u>
Sporobolus contractus	Spike dropseed	2º/ ₆
Aristida adscensionis	Six-weeks three-awn	trace
Gutierrezia sarothrae	Broom snakeweed	<u>trace</u>
Amaranthus species	Pigweed	trace
Chamaesyce species	Spurge	trace
Dieteria canescens	Hoary tansyaster	trace
Atriplex canescens	Four-wing saltbush	trace

^{*}Note: "trace" means this species is present on the cover at a low level of less than 0.5% (one-half of a percent) of the total cover area.

Although "trace" species observed during the September 2014 annual inspection were present at levels less than 0.5%, they were relatively abundant, collectively totaling approximately 3% from 8 species.

Are any burrows present on the cover?

Does any burrow(s) appear to be active?

greater? No

Chemical Waste Landfill Biology Inspection Checklist for the CWL Cover (Continued)

Are there any contiguous areas of no vegetation greater than 200 square feet? (Approximately 14 x14 ft.): No

If "Yes," mark such areas on a map and attach to this checklist, and improve such area(s) with native vegetation via soil augmentation, scarification, and/or reseeding.

Are there any very deeply rooted (roots greater than 8 feet deep at maturity) plant species present on the cover? Yes_

Notes: The CWL cover is in excellent shape. The cover is crowded with many green mature native, perennial clump grasses and many lesser-developed clump grasses.

TA3 received 4.97 inches of precipitation from January 2014-August 2014, with 3.5 inches of precipitation occurring in July and August. The CWL was sprinkler irrigated at the end of May and in the beginning of June in two events that each applied 0.5 inches of water.

Many juvenile four-wing saltbush are present across the cover. This shrub species can be deeply rooted at maturity, but the current individuals present on the cover have not yet developed deep root systems. Greatest mortality of four-wing saltbush is achieved by clipping during winter dormancy. The shrubs will be monitored and clipped sometime during the upcoming winter months as a best management practice (there is no requirement to remove potentially deeprooted plants).

A very low level of weedy species are present on the cover. A weeding event was recently conducted on the cover.

Inspection for animal burrow intrusion into CWL cover

Does any active burrow(s) appear to be that of a species that is able to burrow 6 feet deep or

Yes

Yes

mark such burrow(s)		s that is able to burrow 6 feet or greater, of this checklist, and take appropriate
<u> </u>		vere observed on the cover. No map is able to burrow 6 feet deep or greater.
Biological Aspects Manotes above Survey Biologist Name: Original to: Chemical V	waste Landfill Operating Record	te specific features is attached – see Date: $\frac{9/2}{2014}$

ANNEX D
CY 2014 Chemical Waste Landfill Biology Report

Introduction

As required by the Chemical Waste Landfill (CWL) Post-Closure Care Permit (PCCP) (NMED October 2009), Attachment 1, Section 1.9.1.1, this summary report for Calendar Year (CY) 2014 presents the results of vegetation inspection and monitoring activities performed by the staff biologist on the CWL evapotranspirative (ET) Cover. The purpose of this report is to provide relevant background information, describe local climate trends over the 2014 growing season, expand on the inspection results, and provide recommendations for future ET Cover vegetation monitoring and maintenance. The annual CWL Biology Inspection of the CWL Cover (Biology Inspection) for CY 2014 was conducted on September 2, 2014. The inspection observations are documented in the "Chemical Waste Landfill Post-Closure Inspection Form Biology Inspection Checklist for the CWL Cover" (Annex C).

A self-sustaining plant community is an important component of overall ET Cover performance. Vegetation minimizes erosion by stabilizing the ET Cover surface and moves soil moisture from the ET Cover Topsoil and Native Soil Layers to the atmosphere through transpiration. Vegetation species that are native to the area create the optimal, self-sustaining plant community because the species are specifically adapted to the local climate and soil conditions. The CWL is located at a relatively high elevation and in a challenging semi-arid climate that experiences high temperatures throughout the summer, cold temperatures in the winter, drying winds in the spring, and infrequent precipitation. Perennial native grass species provide the best ET Cover performance due to their extensive near-surface root systems that are poised to uptake moisture throughout the year and prevent precipitation from percolating more deeply into the subsurface soil. The deeper, permanent roots of perennial native grasses enable them to best withstand drought conditions, provide soil stabilization, and remove moisture from deeper soil layers of the ET Cover relative to non-native or annual species.

Background Information

The CWL ET Cover was unsuccessfully seeded in September 2005 after cover construction was completed. To meet the criteria for successful revegetation in the timeframe specified in the PCCP (i.e., within 5 years of the PCCP becoming effective), the CWL was weeded, reseeded, and supplemental watering was conducted for approximately two months during the end of the 2009 growing season. The September 2011 CWL Biology Inspection determined the ET Cover met the criteria for successful revegetation as defined in the PCCP. Successful revegetation criteria are defined in the CWL PCCP (Attachment 1, Section 1.9) and were presented along with inspection results in the CWL Annual Post-Closure Care Report for CY 2011 (SNL/NM March 2012).

The September 2012 CWL Biology Inspection documented cover conditions that continued to meet the criteria for successful revegetation. Although very little of the grass was green and actively photosynthesizing at the time of the 2012 inspection due to lack of precipitation and soil moisture, the native blue grama grasses were determined to be dormant but alive. CWL cover vegetation during the 2012 and 2013 inspections was characterized by small and tightly spaced native juvenile clump grasses. The CY 2012

Biology Report and Biology Inspection are included in the CWL Annual Post-Closure Care Report for CY 2012 (SNL/NM March 2013).

The September 2013 CWL Biology Inspection determined the CWL ET Cover continued to meet the criteria for successful revegetation. Blue grama was the dominant grass species, and along with other native grasses comprised the majority of the ET Cover vegetation. Many weedy species, including weedy grasses, were present that had not previously been documented on the cover. Although many juvenile native grass clumps were noted to have died since the 2012 inspection due to the prolonged drought, the open spaces created by their absence allowed for more resilient clumps to begin their development into bigger and more mature grasses. A greater diversity of native grasses was observed in 2013 than in 2012.

Local Climate Trends for 2014 Growing Season

Climate trends for north-central New Mexico are presented in this section as they have a significant impact on the cover vegetation. Since the reseeding effort in August 2009, the local climate has primarily been dominated by an ongoing drought with temperature extremes across the seasons. During the time since reseeding, 2013 has been the only year to receive above average annual precipitation. The last quarter of 2013 was unseasonably warm, followed by very dry winter and spring seasons in 2014. The 2014 summer monsoon season experienced slightly above average monsoonal rains during July and August, but had lower than average annual precipitation. Table 1 provides meteorological data for the 12-month period preceding and including the CY 2014 growing season.

Precipitation, Relative Humidity and Winds

Drought has been the dominant meteorological trend in the CWL area since 2008. Total annual precipitation for the 2014 growing season and preceding interval (October 2013-September 2014) was 7.17 inches. This is 20% below the 17-year annual precipitation average of 9 inches for this time period. Precipitation in 2013 and 2014 was greater than recent years, but as of September 30, 2014 the area was still in "Moderate Drought" according to the U.S. Drought Monitor (October 2014).

From October 2013-June 2014, the CWL received 2.56 inches of precipitation, approximately half the average of 4.89 inches for this timeframe. During the 2014 monsoon season (July-September), there was a total of 4.61 inches of precipitation, which is above the monsoon season average. From October-December 2014 an additional 2.08 inches of precipitation occurred, almost exactly the 19-year precipitation average for this quarter.

Relative humidity was close to average for the year. Relative humidity was prominently above normal by 12.2% in November 2013 and 9.1% in July 2014. The only notable low relative humidity month was March 2014 at 10.5% below normal. Winds were average for the year; January 2014 varied most greatly from its monthly average with winds 1.0 mile per hour or 14.5% above normal.

 $\label{eq:Table 1} \textbf{Summary of 2014 Growing Season Meteorological Data at the CWL^a}$

Month	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	
Year	2013	2013	2013	2014	2014	2014	2014	2014	2014	2014	2014	2014	
Temperature (°F)													Annual
Monthly Mean	66.60	53.68	44.07	39.30	45.55	49.00	55.48	63.88	77.66	76.09	72.30	69.44	59.42
17-year Temp Means	57.66	46.42	37.03	37.77	41.80	48.49	55.52	66.22	74.82	76.80	74.84	68.84	57.18
Precipitation (Inches)													
Monthly Total	0.16	0.82	0.71	0.00	0.08	0.30	0.14	0.30	0.05	2.07	2.25	0.29	7.17
19-year Precip Means	1.04	0.45	0.54	0.35	0.48	0.60	0.51	0.40	0.52	1.41	1.79	0.90	9.00
Relative Humidity (%)													
Monthly Mean	37.2	56.9	57.4	47.0	40.7	27.1	23.8	20.4	19.3	49.4	44.2	49.7	39.4
17-year RH Means	43.8	44.7	53.4	51.2	45.2	37.6	31.0	26.7	26.0	40.3	44.9	42.1	40.6
Wind (Miles/hour)													
Monthly Mean	8.42	7.45	6.11	7.92	7.39	9.07	10.54	9.58	10.00	9.04	7.50	8.39	8.45
17-year Wind Means	7.82	7.11	6.84	6.92	8.03	9.08	10.60	9.88	9.74	8.39	7.93	8.00	8.36

^aInformation Source: SNL/NM Meteorological Monitoring Program.

Temperature

The CWL experienced ninety-one degrees of temperature variability, with a low of 6.28°F in December and a high of 97.75°F in June. Although 2014 did not experience any 100°F temperatures, overall temperatures were 2.24°F, or 4%, above normal for the year. Heat stress to plants was not as great during the 2014 growing season as it often is, due to lower maximum temperatures. Temperatures were significantly above normal by 7°-9°F from October-December 2013, followed by slightly above average temperatures for the remainder of the winter and early spring. Significantly above-normal wintertime temperatures can cause plant stress due to reduced dormancy and less plant energy available for root growth.

Cover Development and Maintenance

The successional development of the native grasses on the CWL ET Cover was significant in 2013 and continued in 2014. Less robust individual native grass clumps died in 2013, creating barren interspaces for the remaining, more resilient grass clumps to expand their root systems and grow. This succession process involved a major die-off of the juvenile clump grasses due to stress associated with the prolonged drought as outlined in the previous section. In 2013 native vegetation development on the CWL ET Cover was assisted by weeding, applying additional native seed, and supplemental watering. The September 2013 CWL Biology Inspection determined the CWL ET Cover to have approximately 38% coverage with approximately 90% native vegetation composition.

Maintenance activities performed on the CWL ET Cover in 2014 are summarized below and in Section 6.1.2 of the 2014 CWL Annual Post-Closure Care Report.

April: Dead weedy vegetation was removed from the CWL ET Cover, perimeter fence line, and surrounding perimeter area. This maintenance activity primarily removed loose tumbleweeds that had grown on the ET Cover or had blown into the area and accumulated near the fence lines.

May-Early June: Live and dead weedy vegetation was removed from the CWL ET Cover. A ½-inch supplemental watering event occurred in late May.

June: A ½-inch supplemental watering event was performed in early June.

July: During the July 2014 groundwater monitoring event and well/equipment inspection, a small burrow was observed just inside the fence line on the western perimeter, near monitoring well CWL-MW11. The shallow burrow was determined to be inactive (i.e., abandoned) and was backfilled with adjacent soil.

August: Live and dead weedy vegetation was removed from the CWL ET Cover, perimeter fence line, and surrounding perimeter area. The herbicide Strike 3[®] from Winfield Solutions was applied to the western perimeter area between the fence line and the road to prevent additional weed growth.

October: Live and dead weedy vegetation was removed from the CWL ET Cover, perimeter fence line, and surrounding perimeter area. A 1-inch supplemental watering event was performed in mid-October.

September 2014 Inspection Results

The September biology inspection determined the CWL ET Cover to have approximately 44% coverage, approximately 98% of which is native vegetation (Figure 1). Sand dropseed was the dominant grass species, and along with other native grasses comprised the majority of the ET Cover vegetation. The ET Cover was crowded with many green, nearly fully-mature native perennial clump grasses as well as some juvenile native grasses. Very low levels of weedy species were present on the cover at the time of the inspection.

The native grass coverage at the northwest corner of the ET Cover improved significantly from previous years (Figure 1). Many of the clump grasses in this area are in a moderately juvenile stage of development. This is the only access point to the ET Cover so sparser coverage in this area is anticipated and not of concern from an ET Cover performance standpoint.

The percent foliar coverage of the various native grass species varied slightly from previous years. As the cover changes into a mature plant community, the native species composition will likely continue to gradually change.

Precipitation greatly assisted the growth of native vegetation on the ET Cover in 2014. In September of 2013 the cover received 4.12 inches of rain and four $\frac{1}{2}$ -inch supplemental watering events, followed by 0.16 inches of rain and one additional $\frac{1}{2}$ -inch watering event in October. These autumn 2013 wetting events provided deeper, near-surface soil moisture for prime root growth during the cooler seasons. Pre-winter moisture is very beneficial for development into mature native bunchgrasses. This was particularly important in autumn 2013 as only approximately half the normal amount of precipitation occurred during this fall, winter and spring timeframe.

The 2014 summer monsoons provided excellent precipitation, 6% above normal. This warm-season moisture facilitated growth of established native vegetation across the CWL ET Cover.

Recommendations

Weeding events will likely need to be conducted in 2015 to reduce competing weeds to a level that is consistent with the natural surroundings. This will also assist establishment of mature native perennial grasses in the open spaces on the CWL ET Cover.

Late spring supplemental watering may be needed if adequate winter precipitation is not received. Supplemental watering may also be needed in the autumn of 2015 if the monsoon rains and previous 12-month precipitation are below normal.

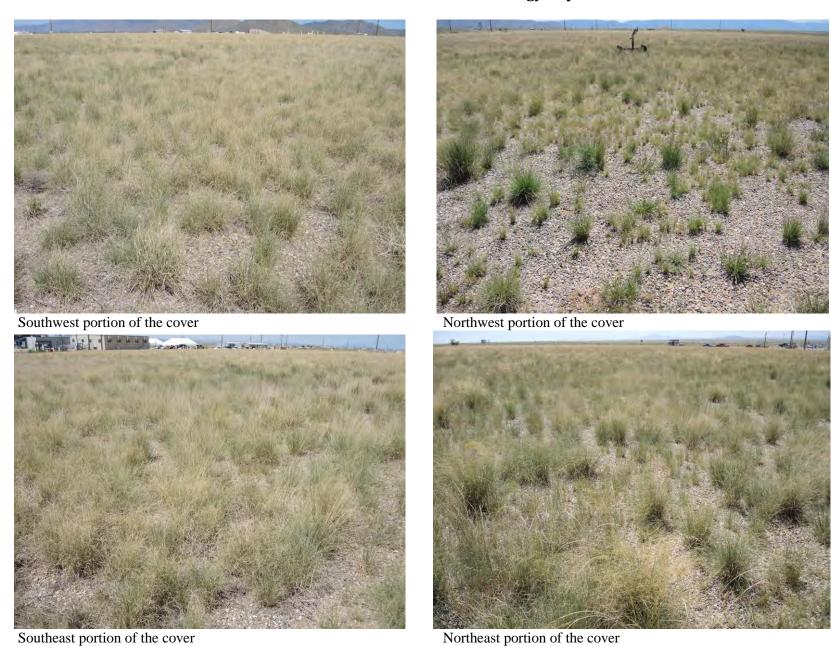


Figure 1 September 2, 2014 CWL ET Cover Photos

Monitoring of the northwest corner will continue and, to the extent possible, traffic through this access point will be minimized. Sparse coverage in this area is anticipated, and as long as it is limited to the immediate vicinity of the entrance it will not have an adverse impact on ET Cover performance. The CWL ET Cover will continue to be inspected annually as required under the PCCP.

References

New Mexico Environment Department (NMED), October 2009. "Resource Conservation and Recovery Act, Post Closure Care Permit, EPA ID No. NM5890110518, to the U.S. Department of Energy/Sandia Corporation, for the Sandia National Laboratories Chemical Waste Landfill," New Mexico Environment Department Hazardous Waste Bureau, Santa Fe, New Mexico, October 15, 2009.

Sandia National Laboratories/New Mexico (SNL/NM), March 2013. "Chemical Waste Landfill Annual Post-Closure Care Report, Calendar Year 2012," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 2012. "Chemical Waste Landfill Annual Post-Closure Care Report, Calendar Year 2011," Sandia National Laboratories, Albuquerque, New Mexico.

U. S. Drought Monitor (October 2014) http://droughtmonitor.unl.edu/