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and y - yare orthogonal and consequently Pythagoras' theory applies. The degrees of 
freedom indicate the number of dimensions in which the vectors are free to move. Thus 
before the data are collected the vector y is unconstrained and has n = 3 degrees of 
freedom; the vector y, which has elements (ji, ji, ji) and is constrained to lie on the equi­
angular line, has only 1 degree of freedom; the vector y - y, which is constrained to lie 
on a plane perpendicular toy, has n - I = 2 degrees of freedom. The analysis of variance 
of Table 6B.2 conveniently summarizes these facts. 

In general, each statistical model discussed in this book determines a certain line, 
plane or space on which if there were no error the data would have to lie. For the example 
of this section, for instance, the model is y = ~ + £. Thus, without the errors £, the 
data would have to lie on the equiangular line at some point [~, ~. ~]. The t and F 
criteria measure the angle that the actual data vector, which is subject to error, makes 
with the appropriate line, plane and space dictated by the model. The corresponding 
tables indicate probabilities that angles as small or smaller will occur by chance. These 
probabilities are dependent on the dimensions of the model and of the data through the 
degrees of freedom in the table. 

Generalization 

The vector breakdown of Table 6.6 for the general one-way analysis of variance is a 
direct extension of that of Table 6B.2. The analysis of variance of Table 6.3 is a direct 
extension of that of Table 6B.l. The geometry and resulting distribution theory for the 
general case is essentially an elaboration of that given above. 

APPENDIX 6C. MULTIPLE COMPARISONS 

Formal procedures for allowing for the effect of selection in making comparisons have 
been the subject of considerable research (see, e.g., O'Neill and Wetherill, 1971, and 
Miller, 1977, also the references listed therein). 

Confidence Interval for a Particular Difference in Means 

A confidence interval for the true difference between the means of, say, the pth and qth 
treatments may be obtained as follows. The observed difference jiP - ji9 has variance 
a2(1/nP + 1/n

9
), and a2 is estimated by the within-treatment mean square s

2
• Thus 

the estimated variance of jiP - ji
9 

is s2(1/nP + 1/n.), and a confidence interval for this 
single preselected difference is provided by 

(6.CI) 

where v = vR, the degrees of freedom associated with s2 . 
For the example discussed in this chapter, a confidence interval for the true difference 

between the means of treatments A and B can be established as follows. We have 
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h- YA = 66- 61 = 5, s~ = 5.6 with v = 20 degrees of freedom, n8 = 6 and nA = 4, 
and the estimated variance for y8 - YA is 5.6 (i + i) = 2.33. Thus the 95% confidence 

limits for the mean difference 178 - YfA are 5 ± 2.09j2.33, that is, 5 ± 3.2, where 2.09 is 
the value of t appropriate for 20 degrees of freedom, which is exceeded, positively or 
negatively, a total of 5% of the time. 

The I - Ct. confidence limits calculated in this way will be valid for any single chosen 
difference; the chance that the specific interval given above includes the true difference 
178 - YfA on the stated assumptions will be equal to I - Ct.. For k treatments, however, 
there are k(k - 1)/2 treatment pairs, and the differences between each one of these pairs 
can be used to construct a confidence interval. Whereas for each interval individually 
the chance of including the true value is exactly equal to 1 - Ct., the chance that all the 
intervals will simultaneously include their true values is less than 1 - Ct.. 

Tukey's Paired Comparison Procedure 

In comparing k aver.ages, suppose that we wish to state the confidence interval for '1; - '1i• 
taking account of the fact that all possible comparisons may be made. It has been shown 
by Tukey (I 949) that the confidence limits for '7; - '1i are then given by 

(6C.2) 

where qk. v is the appropriate upper significance level of the studentized range for k 
means, and v the number of degrees of freedom in the estimate s2 of variance u2 • This 
formula is exact if the numbers of observations in all the averages are equal, and ap­
proximate if the averages are based on unequal numbers of observations. 

The size of the confidence interval for any given level of probability is larger when the 
range statistic qk .• is used rather than the t statistic, since the range statistic allows for 
the possibility that any one of the k(k - I )/2 possible pairs of averages might have been 

selected for the test. Critical values of qk. ,.;y0. have been tabulated; see, for instance, 
Pearson and Hartley (1966), Table 29. As an example, in an experimental program on the 
bursting strengths of diaphragms the treatments consisted of k = 7 different types of 
rubber, and n = 4 observations were run with each type. The data were as follows: 

treatment t A B c D E F G 
average Ji, 63 62 67 65 65 .. 70 60 
estimates of 
variances; 9.2 8.7 8.8 9.8 10.2 8.3 8.0 

For this example, k = 7, s2 = 9.0, v = 21, Ct. = 0.05, and qk .•.• ,2;y0. = 3.26; these 
values give for the 95% limits 

+ qk. •.•/2 

- y0. (~ + ~)s2 = ±3.26)(-! + !)9.0 = ±6.91 
n; ni 

(6C.3) 
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Thus any observed difference greater in absolute value than 6.91 could be considered 

statistically significant; hence we could say that the corresponding true difference is not 

likely to be zero. The 7 x 6/2 = 21 differences are listed in the following table. Those 

that are statistically significant are circled. The total error rate is ex = 0.05. 

treatment A B c D E F G 

average Ji, 63 62 67 65 65 70 60 

difference Ji; - Yi * -4 -2 -2 0J 3 

* -~ -3 -3 @2 
*' 2 2 -3 (j) 

* 0 -5 5 
* -5 5 

* @ 
* 

Dunnett's Procedure for Multiple Comparisons with a Standard 

Experimenters often use a control or standard treatment as a benchmark against which 

to compare the specific treatments. The question then arises whether any of the treat­

ment means may be considered to be different from the mean of the control. In the 

above example suppose that A was the control. The statistics of interest now are the 

k- 1 differences Ji, - Ji A, where Ji A is the observed average response for the control 

treatment. The 1 - cx confidence intervals for all k - I differences from the control are 

as given by Equation 6C.2, except that the value of qk., ..• 12f.)2 is replaced with 

Dunnett's t. For tabulated values of this quantity, tk .•.• 12 , see Dunnett (1964). Thus in 

the above example we have tk. ,._.12 = 2.80, giving for the 95% limits 

11:'"1 ± tk. , .. a/2 S = ± 2.80 X 3.00y 4 + 4 = ± 5.94 (6C.4) 
r 

Therefore any observed difference from the control greater than 5.94 in absolute value 

can be considered statistically significant. The k - 1 = 6 differences are as follows: 

treatment 

average 

difference 

A B 
(control) 

63 62 

* 

C D E F G 

67 65 65 70 60 

-4 -2 -2 0 3 

Only the difference YF - Ji A is indicative of a real difference between the means of six 

treatments and the control treatment. 
For the special case of comparisons against a standard or a control it is good practice 

to allot more observations nA to the control treatment than to each of the other treat­

ments n,. The ratio nA/n, should be approximately equal to the square root of the 

number of treatments, that is, nA/n, = .jk. 
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Other Procedures 

Other techniques are also available for making multiple comparisons between treatment 

averages. One method, to be used only if the F test has shown evidence of statistically 

significant differences, is the Newman-Keuls (Newman, 1939, and Keuls, 1952). An 

alternative has been suggested by Duncan (1955). A method for constructing an interval 

statement appropriate for all possible comparisons among the k treatments, not merely 

their differences, has been proposed by Scheffe (1953). The Scheffe method is the most 

conservative, that is, it produces the widest interval statements. 

Use of Formal Tests for Multiple Comparisons 

In practice it is questionable how far we should go with such formal tests. The difficulties 

are as follows: 

I. How exact should we be about uncertainty? We may ask, for example, "How much 

difference does it make to know whether a particular probability is exactly 0.()4, 

exactly 0.06, or about 0.05?" 
2. Significance levels and confidence coefficients are arbitrarily chosen. 

3. In addition to the procedures we have mentioned, others employ still other bases for 

making multiple comparisons. The subtleties involved are not easy to understand, 

and the experimenter may find himself provided with an exact measure of the un­

certainty of a proposition he does not fully comprehend. 

For many practical situations a satisfactory alternative is careful inspection of the 

treatment averages in relation to a sliding reference distribution, as described in this 

chapter. The procedure is admittedly approximate, but, we believe, not misleadingly so. 
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Euphyrica, I, 112. 
Duncan, D. B. ( 1955). Multiple range and multiple F tests, Biomelrics, II, I. 
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40, 87. 

QUESTIONS FOR CHAPTER 6 

I. What are the basic ideas of the analysis of variance? 
2. Invent some data for three treatments with four replications each. How 

can the data vector be decomposed into three separate parts? What are 

these parts? Construct an analysis of variance table. 
What is the usual model for a one-way analysis of variance? What are its 

possible shortcomings? 
4. Why is the assumption of normality made in analysis of variance? If the 

experiment is properly randomized, is this assumption necessary? 

How is Pythagoras' theorem related to the analysis of variance? 

6. What are residuals? How can they be calculated? How can they be 

plotted? Why should they be plotted? 
How can a reference distribution diagram be constructed for the com­

parison of k means? What can one tell from such a diagram but not from 

an analysis of variance table? 




